Professor Kate Poirier | OL33 | Spring 2021

Category: Assignment Posts (Page 4 of 14)

Test #2 “Cheat sheet”

These are the example-definitions with the problems I had most trouble with understanding during the lessons, some of them were pretty confusing to me. But hopefully, these will come in handy to determine what the question is asking.

When ,recently, preparing for an exam or a hot topic presentation I tend not to keep these right on my cheat sheet. And it has been very successful in term of understanding the problem as well as explaining to the professor how did I get the correct answer.

Test #2 Individual Cheat Sheet

11-12. Taylor and Maclaurin Polynomials

13. Sequences

Arithmetic Sequence:

Geometric Sequence:

Convergence of Sequence:


14. Infinite Series

Infinite Sequence:

If a sequence is a list of numbers: … then a series is just the sum of the terms in the series: …

Infinite Series:

Geometric Series:

Partial Sum of Geometric Series:

Converging and Diverging Series:

For the infinite series

the nth partial sum is given by

If the sequence of partial sums converges to L, then the series converges where L is the sum of the series.

If diverges, then the series diverges.

Divergent Test for a Series:

 

Telescoping Infinite Series:

The telescoping series is of the form

The series will only converge if and only if approaches a finite number as n approaches infinity.

15. The Divergence and Integral Tests:

Integral Test:

  • The interval does not always need to start at 1.
  • The function does not necessarily always need to be decreasing. It needs to decrease for the x-value larger than 1.

P-Series Test:

Divergence Test:

16. Comparison Tests:

Comparison Test:

Limit Comparison Test:

17. Alternating Series Test:

Alternating Series Test:

The alternating series test applies to the alternating harmonic series because the individual terms satisfy the three conditions:

So the alternating harmonic series   converges by the alternating series test.

Absolute and Conditional Convergence:

This means that there are three possibilities for any given series: the series either converges absolutely or conditionally, or the series diverges.

18. Ratio and Root Test:

Ratio Test:

Root Test:

19. Power Series and Functions & Properties of Power Series:

Power Series:

Interval of Convergence:

20. Taylor and Maclaurin Series & Working with Taylor Series:

Taylor Series

 

« Older posts Newer posts »

© 2024 MAT1575 Calculus II

Theme by Anders NorenUp ↑