Professor Kate Poirier | OL67 | Fall 2020

Category: Student Work (Page 11 of 44)

Project #3

  

Section 6.3, Question 3

Find the current (I) in the RLC circuit, assuming that E(t) = 0 for t>0.

R = 2 ohms, L = 0.1 henrys, C = 0.01 farads,$ Q_o$ = 2 coulombs, $I_o$ = 0 amperes

According to Kirchhoff’s Law the sum of the voltage drops in a closed RLC circuit is equal to the impressed voltage E(t).

L$I’$ + RI + $\frac{1}{C}$Q = E(t)

This equation can be rewritten by replacing I with Q’ because charge stored in a capacitor is related to the current according to the equation below:

Q = $Q_o$ + $\int_{0}^{t}$ I($\tau$) d$\tau$

Rewritten Equation:

L$Q”$ + R$Q’$ + $\frac{1}{C}$ = E(t)

Substituting the values of L, R, C, and E(t) we get:

0.1 $Q”$ + 2 $Q’$ + $\frac{1}{0.01}$ Q = 0

0.1 $Q”$ + 2 $Q’$ + 100 Q = 0

Characteristic Equation:

0.1 $r^2$ + 2r + 100 = 0

Use the quadratic formula to find roots.

r = $\frac{(-2)\pm\sqrt{2^2-4(0.1)(100)}}{2(0.1)}$

= $\frac{-2\pm\sqrt{-36}}{0.2}$

= $\frac{-2\pm6i}{0.2}$

r = $-10\pm30i$

$r_1$ = $-10 + 30i$, $r_2$ = $-10-30i$

Roots are complex so general solution is:

y=$e^{\lambda x}$[$C_1$cos($\omega x$) + $C_2$sin($\omega x$)]

$\lambda$ = (-10), $\omega$ = (30) based on the roots we found

so;

Q(t) = $e^{-10t}$[$C_1$cos(30t)+$C_2$sin(30t)]

with $Q_o$=Q(0)=2 coulombs when t=0 we can solve for constant $C_1$

Q(0)=$e^{-10(0)}$[$C_1$cos(30 $\times$ 0)+$C_2$sin(30 $\times$ 0)]

cos(0)=1, sin(0)=0

2 = 1[$C_1$$\times$1+0]

2 = $C_1$

$I_o$=0 amperes : $I_o$=$Q’_o$=0 we use this to solve for constant $C_2$ and t=0

Q(t) = $e^{-10t}$[$C_1$cos(30t)+$C_2$sin(30t)]

$\frac{d}{dt}$Q(t) = ($e^{-10t}$[$C_1$cos(30t)+$C_2$sin(30t)]) $\frac{d}{dt}$

$Q'(t)$=[-10$C_1$ $e^{-10t}$ cos(30t) – 30$C_1$ $e^{-10t}$ sin(30t)] + [-10$C_2$ $e^{-10t}$ sin(30t) + 30$C_2$ $e^{-10t}$ cos(30t)]

0 = [-10$\times$ 2 $e^{-10(0)}$ cos(30$ \times 0$) – 30 $\times$ 2 $e^{-10(0)}$ sin(30$\times$ 0)] + [-10$C_2$ $e^{-10(0)}$ sin(30$\times$ 0) + 30$C_2$ $e^{-10(0)}$ cos(30$\times$ 0)]

0 = -20 + 0 + 0 + 30$C_2$

20 = 30$C_2$

$\frac{2}{3}$ = $C_2$

Therefore:

Q(t) = 2$e^{-10t}$cos(30t) + $\frac{2}{3}$ $e^{-10t}$sin(30t)

We differentiate Q(t) to get the current (I).

$\frac{d}{dt}$Q(t) = [2$e^{-10t}$cos(30t) + $\frac{2}{3}$ $e^{-10t}$sin(30t)]$\frac{d}{dt}$

$Q'(t)$ = I = -20$e^{-10t}$cos(30t) – 60$e^{-10t}$sin(30t) – $\frac{20}{3}$ $e^{-10t}$sin(30t) + 20$e^{-10t}$cos(30t)

I = $\frac{-200}{3}$ $e^{-10t}$sin(30t)

Test #3 & Test #3 review assignment

Test #3

Thursday, December 3 & Friday, December 4

Test #3 will cover material from Sections 6.1, 6.3, 7.2, and 7.3.

There will be three questions: one spring question and one circuit question from chapter 6 and one series solution one from chapter 7. You will answer only two of the three questions.

Other than the number of questions, the structure of Test #3 will be exactly the same as that for Tests #1 and #2. The Test #3 checklist with interview sign-up sheet and upload link will be posted next week.

Test #3 review assignment

Due on the OpenLab Sunday, November 29

Your Test #3 review assignment is almost the same as the review assignments for Test #1 and #2 (the instructions for the Test #1 review assignment are here).

You will share your complete solution to one problem on the OpenLab. Choose one problem from:

  • the WeBWorK set Practice Springs
  • the WeBWork set Practice Circuits
  • textbook homework from Section 7.2
    • p.329: 1, 3, 8, 11-13, 19-25 odd
  • textbook homework from Section 7.3
    • p.338: 1-5 odd, 19-23 odd, 33-37 odd, 41-45 odd

(Note that the WeBWorK sets Practice Springs and Practice Circuits are optional and will not count toward your WeBWork grade)

Don’t forget to add the category Test #3 Review before you publish your post

Project #3: Groups: Chapter 6.3: The RLC Circuit

6.3 The RLC Circuit

Introduction: 

The main purpose of chapter 6.3 is to show how differential equations can be used to solve RLC Circuits problems. RLC circuits can simply be explained as electrical circuits that consist of a resistor, an inductor, and a capacitor all connected to each other. Now to understand the real world problem part of this chapter, the function of the components must be understood. The resistor has many uses, in an electrical circuit one of its main purposes is to reduce current flow. The inductor protects the circuit from changes in the current that can damage other components. Finally the capacitor stores electric charges that can be denoted as (Q) which can be used for other purposes. In other words differences in potential occur at the resistor, induction coil, and the capacitor. RLC circuits have many applications that range from oscillator circuits to radio receivers.

 Now in chapter 6.3 we are mainly concerned with the difference in electric potential that occurs in a closed circuit, which is caused by the flow of a current in the circuit. In other words we are interested in the changes that occur in a RLC circuit when voltage(E) is introduced to the circuit producing a current(I) that runs across the circuit, and all the other components (R), (L), (C) finally giving us the electrical potential(E(t)). Now that we know what exactly we want to find out in the real world problem. This section is solving RLC circuit problems through the use of Linear Second Order Equations. In the following part of this lesson will be showing the ways in which all the units relate to each other and what formulas are used to solve the RLC problems.

In the image above we have an example of an RLC circuit and all the units need it to solve the RLC circuit problems. 
The following notations are used:
E= E(t)  for the electric potential/impressed voltage from a battery or generator 
I=I(t) for the current of the circuit
R is the resistance of the resistor
L is the inductance of the inductor
C is the capacitance of the capacitor 

In accordance with Kirchhoff’s Law, it is stated that the sum of the voltage drops in a closed RLC circuit equals the impressed voltage. Using formulas 1,2,4  from the section above we get the new formula:

Same as in Second Order Linear Equation problems there are also initial value problems.

In the example section several example problems are able to explain how these equations are solved.

Finally we also have Non-homogeneous Second Linear Equation Problems

This problem deals with forced oscillation with damping, a more thorough explanation is given in example 5 where a Non-homogeneous Second Linear Equation problem is explained and solved with the “undetermined coefficients” method.

Examples of RLC Circuit Problems:

Example 1:

Find the current in the RLC circuit, assuming that E(t) = 0

for t > 0.

R = 3 ohms; L = 0.1 henrys; C = 0.01 farads; Q0 = 0 coulombs; I0 = 2 amperes.

The video example and Solution is here.

Example 2:

Find the current in the RLC circuit, assuming that E(t) = 0

for t > 0.

R = 2 ohms; L = 0.05 henrys; C = 0.01 farads’; Q0 = 2 coulombs; I0 = 2 amperes.

The video example and Solution is here.

Example 3:

Find the current in the RLC circuit, assuming that E(t) = 0

for t > 0.

R = 2 ohms; L = 0.1 henrys; C = 0.01 farads; Q0 = 2 coulombs; I0 = 0 amperes.

Example 4:

Find the steady state current in the circuit describe by the equation.

1/10Q”+6Q’+250Q = 10 cos 100t + 30 sin100t

The video example and solution is here.

Find the steady state current in the circuit describe by the equation.

1/10Q”+3Q’+100Q = 5cos 10t – 5sin 10t

The video example and Solution is here.

« Older posts Newer posts »