We won’t be following this schedule precisely, but we’ll be covering the topics in this order, so this should give you a sense of what to expect this semester.

Session | Dates | Section and Topic | Pages | WeBWorK | Homework |
---|---|---|---|---|---|

1 | 1.2 First Order Equations [OPTIONAL: 1.3 Direction Fields for First Order Equations] | 7-13 16-17 | p.14: 1, 2(a-c,e-h), 4(a-f), 5, 6, [optional: p. 14: 9 and p. 21: 1-11] |
||

2 | 2.1 Linear First Order Equations | 30-41 | p.41: 1-9 odd, 17-23 odd, 31-37 odd, 38, 40, 42 |
||

3 | 2.2 Separable Equations | 45-52 | p.52: 2, 3, 6, 12, 17-27 odd, 28, 35, 37 |
||

4 | 2.4 Transformation of Nonlinear Equations into Separable Equations | 62-68 | p.68: 1-4, 7-11 odd, 15-18, 23-27 odd |
||

5 | 2.5 Exact Equations | 73-79 | p.79: 1-21 odd, 29, 30, 33, 34 | ||

6-7 | Growth and Decay Cooling and Mixing Elementary Mechanics | 130-137 140-147 151-160 | p.138: 1-7 odd, 11, 13, 17 p.148: 1-11 odd, 15 p.160: 3, 5, 7, 10 |
||

8 | First Examination | ||||

9 | 3.1 Euler's Method | 96-106 | p.106: 1-7 odd, 11-13, 15-19 odd, 20-22 |
||

10 | 3.2 The Improved Euler Method and Related Methods | 109-116 | p.116: 1-7 odd, 11-13, 15-19 odd, 20-22 |
||

11 | 3.3 The Runge-Kutta Method | 119-124 | p.124: 1-7 odd, 11-13, 15-19 odd, 20-22 |
||

12 | 5.1 Homogeneous Linear Equations | 194-203 | p.203: 1-5 | ||

13 | 5.2 Constant Coefficient Homogeneous Equations | 210-217 | p.217: 1-17 odd, 18-21 | ||

14 | 5.3 Nonhomogeneous Linear Equations | 221-227 | p.227: 1-5 odd, 9-13 odd, 16-20 even, 25-29 odd, 33-37 odd |
||

15 | 5.4 The Method of Undetermined Coefficients I | 229-235 | p.235: 1-29 odd | ||

16 | 5.6 Reduction of Order | 248-252 | p.253: 1-3, 5, 9, 13, 17, 19, 25, 31 | ||

17 | 5.7 Variation of Parameters | 255-262 | p.262: 1-5, 7, 11, 13, 31, 33, 34 | ||

18 | Second Examination | ||||

19 | Spring Problems I Spring Problems II | 268-277 279-284 | p.277: 1, 3, 7-13 odd, 19, 21 p.288: 3, 4, 7-11 odd, 14-16 |
||

20 | Spring Problems II (continued) The RLC Circuit | 284-287 290-295 | p.288: 13, 17-20 p.295: 1-10 |
||

21 | Review of Power Series Series Solutions Near an Ordinary Point I | 307-316 320-328 | p.317: 1, 11, 13, 15-17 p.329: 1, 3, 8, 11-13, 19-25 odd |
||

22 | 7.3 Series Solutions Near an Ordinary Point II | 335-338 | p.338: 1-5 odd, 19-23 odd, 33-37 odd, 41-45 odd |
||

23 | 7.4 Regular Singular Points Euler Equations | 344-346 | p.347: 1-12 | ||

24 | Third Examination | ||||

25 | 8.1 Introduction to the Laplace Transform | 394-402 | p.403: 1(a,b,d,e), 2(b,c,f,g,h,i), 4, 5, 18 |
||

26 | 8.2 The Inverse Laplace Transform [NOTE: use the table on p.463 of the textbook to do the homework] | 405-412 | p.412: 1(a,b,d,e), 2(a-e), 3(a-d), 4(a,d,e), 6(a), 7(a), 8(a,d) |
||

27 | 8.3 Solution of Initial Value Problems [NOTE: use the table on p.463 of the textbook to do the homework] | 414-419 | p.419: 1-31 odd | ||

28 | 8.6 Convolutions [NOTE: use the table on p.463 of the textbook to do the homework] | 441-445 | p.450: 2(a,b,c,i,j,l,n), 3(a-c,e-g) | ||

29 | Review | ||||

30 | Final Examination |

## Recent Comments