I had to place it as a pdf file because openlab for some reason makes my images blurry
Search
Recent Comments
- Sierra Morales on Project #4
- Oscar on Project #4
- tfraser on Project #4
- Sheyla Criollo on Project #4
- Dief on Project #4
Categories
- Announcements
- Assignment Instructions
- Assignment Posts
- Course Activities
- Discussions
- Exam 1 Review
- Introduce yourself
- Project #1
- Project #1 groups
- Project #1 pairs
- Project #3
- Project #3 groups
- Project #3 pairs
- Project #4
- Resources
- Second Order Reduction of Order
- Second Order Variation of Parameters
- Sections 1.2 & 1.3
- Student Work
- Surveys & Quizzes
- Test #1 Review
- Test #2 Review
- Test #3 Review
- Tutorials
- Uncategorized
- Weekly checklists
Sharing
Logged-in faculty members can clone this course. Learn More!
Find Library Materials
Library Information
Ursula C. Schwerin Library
New York City College of Technology, C.U.N.Y
300 Jay Street, Library Building - 4th Floor
Acknowledgments
This course is based on the following course(s):
- MAT1375 by Jonas Reitz
- MAT2680 by Jonas Reitz
I’ve been cheating and taking a screen capture and then uploading an image. Just type “image” in the search block after you click the + sign.
there’s always latex too:
replace * * with [ ] and this should post as the pretty math symbols:
*latextext*
$frac{dy}{dt}=y+4$
$y’=y+4$
$\frac{y’}{y+4}=\frac{y+4}{y+4}
$\frac{y’}{y+4}=1$
$\int \frac{y’dt}{y+4}=\int 1 dt$
let u= y+4
du= y’dt
$\int \frac{du}{u}= \int 1 dt$
$ln\lvert u \rvert +c = t+c$
$ln\lvert y+4 \rvert +c = t+c$
$e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
$y+4= e^{t+4}$
$y=e^{t+c}-4$
Should look like this (fingers crossed, no preview for comments):
[latextext]
$frac{dy}{dt}=y+4$
$y’=y+4$
$\frac{y’}{y+4}=\frac{y+4}{y+4}
$\frac{y’}{y+4}=1$
$\int \frac{y’dt}{y+4}=\int 1 dt$
let u= y+4
du= y’dt
$\int \frac{du}{u}= \int 1 dt$
$ln\lvert u \rvert +c = t+c$
$ln\lvert y+4 \rvert +c = t+c$
$e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
$y+4= e^{t+4}$
$y=e^{t+c}-4$
ops *latexpage*
[latexpage]
$frac{dy}{dt}=y+4$
$y’=y+4$
$\frac{y’}{y+4}=\frac{y+4}{y+4}
$\frac{y’}{y+4}=1$
$\int \frac{y’dt}{y+4}=\int 1 dt$
let u= y+4
du= y’dt
$\int \frac{du}{u}= \int 1 dt$
$ln\lvert u \rvert +c = t+c$
$ln\lvert y+4 \rvert +c = t+c$
$e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
$y+4= e^{t+4}$
$y=e^{t+c}-4$
hahaha where is the edit button!
$\frac{dy}{dt}=y+4$
$y’=y+4$
$\frac{y’}{y+4}=\frac{y+4}{y+4}$
$\frac{y’}{y+4}=1$
$\int \frac{y’dt}{y+4}=\int 1 dt$
let u= y+4
du= y’dt
$\int \frac{du}{u}= \int 1 dt$
$ln\lvert u \rvert +c = t+c$
$ln\lvert y+4 \rvert +c = t+c$
$e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
$y+4= e^{t+4}$
$y=e^{t+c}-4$
just 5 more attempts and then I’m out
[latexpage]
$\frac{dy}{dt}=y+4$
$y’=y+4$
$\frac{y’}{y+4}=\frac{y+4}{y+4}$
$\frac{y’}{y+4}=1$
$\int \frac{y’dt}{y+4}=\int 1 dt$
let u= y+4
du= y’dt
$\int \frac{du}{u}= \int 1 dt$
$ln\lvert u \rvert +c = t+c$
$ln\lvert y+4 \rvert +c = t+c$
$e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
$y+4= e^{t+4}$
$y=e^{t+c}-4$
ok fix this and it’s golden… :
$y+4= e^{t+4}$
should be:
$y+4=e^{t+c}
Oscar, I absolutely love that you’re all in on LaTeX! If you wanna get real nerdy, add a backslash to the beginning of your natural logarithm (so \ln instead of just ln). Since the natural log is a well-known function, people usually typeset it in roman characters instead of italics (which is what we see for letters in math mode), so there’s already this built-in macro to do this. Same goes for \sin, \cos, etc…