Professor Kate Poirier | OL67 | Fall 2020

Test #1 Review, Webwork First Order Linear Problem 1

I had to place it as a pdf file because openlab for some reason makes my images blurry

6 Comments

  1. Oscar

    I’ve been cheating and taking a screen capture and then uploading an image. Just type “image” in the search block after you click the + sign.

    there’s always latex too:

    replace * * with [ ] and this should post as the pretty math symbols:

    *latextext*

    $frac{dy}{dt}=y+4$
    $y’=y+4$
    $\frac{y’}{y+4}=\frac{y+4}{y+4}
    $\frac{y’}{y+4}=1$
    $\int \frac{y’dt}{y+4}=\int 1 dt$

    let u= y+4
    du= y’dt

    $\int \frac{du}{u}= \int 1 dt$
    $ln\lvert u \rvert +c = t+c$
    $ln\lvert y+4 \rvert +c = t+c$
    $e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
    $y+4= e^{t+4}$
    $y=e^{t+c}-4$

    Should look like this (fingers crossed, no preview for comments):

    [latextext]

    $frac{dy}{dt}=y+4$
    $y’=y+4$
    $\frac{y’}{y+4}=\frac{y+4}{y+4}
    $\frac{y’}{y+4}=1$
    $\int \frac{y’dt}{y+4}=\int 1 dt$

    let u= y+4
    du= y’dt

    $\int \frac{du}{u}= \int 1 dt$
    $ln\lvert u \rvert +c = t+c$
    $ln\lvert y+4 \rvert +c = t+c$
    $e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
    $y+4= e^{t+4}$
    $y=e^{t+c}-4$

    • Oscar

      ops *latexpage*

      [latexpage]

      $frac{dy}{dt}=y+4$
      $y’=y+4$
      $\frac{y’}{y+4}=\frac{y+4}{y+4}
      $\frac{y’}{y+4}=1$
      $\int \frac{y’dt}{y+4}=\int 1 dt$

      let u= y+4
      du= y’dt

      $\int \frac{du}{u}= \int 1 dt$
      $ln\lvert u \rvert +c = t+c$
      $ln\lvert y+4 \rvert +c = t+c$
      $e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
      $y+4= e^{t+4}$
      $y=e^{t+c}-4$

      • Oscar

        hahaha where is the edit button!

        $\frac{dy}{dt}=y+4$
        $y’=y+4$
        $\frac{y’}{y+4}=\frac{y+4}{y+4}$
        $\frac{y’}{y+4}=1$
        $\int \frac{y’dt}{y+4}=\int 1 dt$

        let u= y+4
        du= y’dt

        $\int \frac{du}{u}= \int 1 dt$
        $ln\lvert u \rvert +c = t+c$
        $ln\lvert y+4 \rvert +c = t+c$
        $e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
        $y+4= e^{t+4}$
        $y=e^{t+c}-4$

        • Oscar

          just 5 more attempts and then I’m out
          [latexpage]

          $\frac{dy}{dt}=y+4$
          $y’=y+4$
          $\frac{y’}{y+4}=\frac{y+4}{y+4}$
          $\frac{y’}{y+4}=1$
          $\int \frac{y’dt}{y+4}=\int 1 dt$

          let u= y+4
          du= y’dt

          $\int \frac{du}{u}= \int 1 dt$
          $ln\lvert u \rvert +c = t+c$
          $ln\lvert y+4 \rvert +c = t+c$
          $e^{ln\lvert y+4 \rvert +c}=e^{t+c}$
          $y+4= e^{t+4}$
          $y=e^{t+c}-4$

          • Oscar

            ok fix this and it’s golden… :

            $y+4= e^{t+4}$

            should be:

            $y+4=e^{t+c}

          • Kate Poirier

            Oscar, I absolutely love that you’re all in on LaTeX! If you wanna get real nerdy, add a backslash to the beginning of your natural logarithm (so \ln instead of just ln). Since the natural log is a well-known function, people usually typeset it in roman characters instead of italics (which is what we see for letters in math mode), so there’s already this built-in macro to do this. Same goes for \sin, \cos, etc…

Leave a Reply

Your email address will not be published. Required fields are marked *