Last year’s version of the research article assignment wasn’t exactly the same as this year’s, but it was similar. I’ll copy the OpenLab posts from last year so you can get a sense of how others interpreted this assignment.

Source: EBSCO Database from Citytech Library

Published: October 1st, 2014

Title: Key factors for Successful Integration of Technology into the Classroom: Textbooks and Teachers

Author(s): Hee-Chan Lew, Seo-Young Jeong

The article is about the use of technology in a classroom; however, the author accentuates the most in Korean secondary school mathematics. From the article the author states that Korean Mathematics teachers and Korean Mathematics textbooks are the two primary reasons why it is difficult to implement technology in Korean Mathematics education. Furthermore, she talks about the four main components of the role of technology in math learning and teaching as well as noting that the role of technology in mathematics education requires careful distinctions between two different types of mathematical activities.

In fact the author defines the levels of technology-use in mathematics classroom within eight types of level of use in sequence. In addition, the author shows that technology mainly plays a technical role in activities of Korean senior secondary mathematics textbooks. There are 193 exercises with technology in Korean senior secondary Mathematics textbooks. However, there are 124 activities with technology in junior secondary textbooks.

Does Mathematics education benefit without technology benefit the teachers?

Title: Map, Scale, proportion, and Google Earth

Author(s): Martin C. Roberge and Linda L. Cooper

Published: April 2010

This article is based on the concept of using sources such as Google maps and Google Earth in order to teach students proportions in terms of large and small-scale scenarios. The tools are used in a pedagogical sense, by enabling students to use what they already know about places, ratios, and measurements and apply it to real life situations where they make connections with geography and proportional reasoning calling for a higher level of thinking. So, not only are the students learning how to read a map, use its key to measure the distance between places or objects, but they are able to convert the maps measurements to real ground measurements through proportioning to get approximates of distances with a very small margin of error. This activity also forces students to look past the ideas of proportionality typically taught in the classroom by making them use their reasoning skills to come up with the basic format taught in the class and other ways that also lead to correct answers.

Question: How do can we incorporate a tool such as Google Earth into our lesson plan without it being overwhelming to our students?

In order to incorporate a tool such as Google Earth into our lesson plan we can guide our students to recognize the different types of images on the computer from different perspectives and then zoom in and out and encouraging the students to think about what words can they use in order to describe what is happening as you manipulate the picture of the object in relation to size and distance. Once the students realize the action that you are doing you can relate this to “zooming in and out,” on a phone or computer (everyday activities), and then introduce maps of different scale factors starting out with things that are familiar—such as, their neighborhood, the area surrounding their school and once they grasp the concept of proportions based on a large scale, then we can broaden the area of the map based on an entire city, then region and so forth using a smaller scale this way the students will not be overwhelmed with converting the measurements on the map with real life measurements. This really forces students to critically think and analyze each situation and also forces them to create and answer many questions on any type of picture.

Discussion questions;

- What is the relevance of using a source like Google Earth in a mathematics classroom?
- How can we adapt the activity for a younger audience (6
^{th} graders)?
- How can we adapt the activity for an older audience (high school students)?
- What are some ways to access students learning using Google earth as a pedagogical tool?
- What other concepts can we have students learn by using Google earth?
- What other ties does this topic have to other fields in STEM?

Title: Slower Algebra Students Meet Faster Tools: Solving Algebra Word Problems With Graphing Software

Author(s): Michal Yerushalmy

Journal Name: Journal for Research in Mathematics Education

Published: 2006

In this journal article, they conducted a study on middle school students to see how each pair used the graphing tool to solve word problems. In this study, they conducted three groups, three pairs of successful students (U25), three pairs of average students and three pairs of low successful students (L25). Each group was given the same word problems to complete. Both groups had access to the computer and graphing tool. The graphing tool is a software with capabilities similar to a basic graphic calculator that presents two-dimensional graphs and numerical values for any single variable expression. As each pair completed the word problem, there were interviews being done as they worked. The interviewer was not allowed to give the answers only to assess their thinking process. The main goal of the interviews was to observe the processes by which the L25 constructed mathematical meaning while solving traditional word problems with the function graphing software. From this study, they noticed how each pair had a different approach when it came to using the graphing tool. Some students wanted to use the tool to get an answer, others use the tool to check if their answer was correct and others students just wanted a visual representation of the function. Overall, the tool was part of the students’ reasoning and argumentation and was used to reflect on conjectures.

Question: How can we guide students to use graphing tools properly to solve algebra problems?

Graphing tools were constantly used in classrooms, and students were encouraged to use them. The techniques involved in using the graphing tool were practiced routinely in the eighth and ninth grades, including values, reading linked representations of function, and reading the values at intersection of two function graphs. Graphing tools are very helpful when students are dealing with functions. But if a student does not use them properly or over rely on these graphing tools, it may cause them just use the graphing tools to get the answers of the problems instead of trying to reason and understand the concept behind the problem. So, in order to help student to use the graphing tools properly, we need to set rules that they can only use them when they complete difficult operations and to confirm conjectures. Also make the assessment “uncheatable,” students need to be able to understand the concept, validate it and apply it. That is goal of solving a problem.

Discussion questions:

- Should middle school students be allowed to use graphing tools in class?
- What kind of graphing tool are helpful for middle school students?
- What are the benefits for students to use graphing tool in the class?
- How do you know if your students are over relying on graphing tools?
- How does a graphing tool help a teacher teach her/his students understand algebra?
- Should you allow student use graphing tool during the test?

Title: Conditions for Effective Use of Interactive On-line Learning Objectives: The case of a fraction computer-based learning sequence

Authors: Catherince D. Bruce & John Ross

Journal: The Electronic Journal of Mathematics and Technology

Year of publication: 2006

- This paper focuses on the challenges of students’ understanding about fractions from students’ perspectives and teachers’ perspective. Not using factions daily is one of the factors that makes it difficult to embed the significance of learning fractions as part of students’ life. The success of supporting students’ understanding lies on the design of instructions. The traditional teaching methods lack the emphasis at students’ conceptual understanding with little connections to students’ existing knowledge. However, technology-assisted learning is introduced as a successful model in enhancing students’ understanding with challenging math concepts.

The paper takes a main point on a computer-based learning package named CLIPS-Critical Learning Instructional Paths Supports. The package consists of its own characteristics and learning tasks for students. Even though students make meaningful progress in understanding of fractions under CLIPS, there are limitations and exceptions that students would not benefit from the program. Through case studies, the paper concludes the importance of building the direct relationships between online learning tasks and in-class learning tasks. The necessity of having in-class activities that are within students’ zone of proximal development. The full participation or involvement in the CLIPS will make a difference, and the pair work between students will support each other in completing the CLIPS tasks. Last but not the least, since the CLIPS program is computer-based learning, students can keep their own pace and go back for checking their work. The educators believe that students go with the sequence order to understand the content better than those who were absent and chose the tasks randomly.

- Why do you think learning fractions is challenging for middle grades students in your own opinion?

First of all, there are different ways to represent fractions: division sign, colon, and fraction bar. Fractions are divided into proper fraction, improper fraction, and mixed fractions. They will have questions involving mixed fractions, but what they need to do first it to convert them to improper fractions to make computation easier. If a teacher cannot make his or her students understand the meaning of proportionality, it is going to be extremely hard for students to complete a task associated with fractions or understanding the significance behind ratio. From the reading, I learned that a computer-based learning might be a possible way to assist students to have a better understanding of something that was not clear to them through vivid images and audio. At the same time, there are challenges to implement technology in a classroom. The learning objectives from the sites should be correlated to the lesson itself. Schools need financial support to provide students’ access to computers. There are also technical issues along with computers that might happen in the classroom, which will make it unsuccessful for students to keep a consistent attention during the tasks. In conclusion, I agree that students need some technology in their learning if students can use it wisely with their goals of learning in mind.

When students are learning fractions, they will be able to understand what a ratio is. How to complete a ratio table is considered one of the basic and important tasks for students when they learn fractions from my observation experience. Thus, there are a lot of definitions that students need to know in order to understand fractions.

Without access to the reading, I learned that students struggle to factions because they are familiar with whole numbers. They are good at simple operations with these numbers, but students will have difficulty with whole numbers with different signs. They are likely to make conceptual errors when they subtract negative whole numbers. It is going to be a higher level when students learn fractions.

- What are the strategies that you think can help students build a good habit of using internet?

What are possible ways that we can negotiate with students’ parents’ involvement with students’ online assignments at home? (like sit there with the students for half-hour)

Title: Perceptual Learning Modules in Mathematics: Enhancing Students’ Pattern Recognition, Structure Extraction, and Fluency

Summary:

The article that we choose is about perceptual learning software where the technology can help produce rapid and enduring advances in learning. In the article it talks about the positives about using perceptual learning software in the classroom with the different experiments conducted with students. In the first experiment 68 students (9th and 10th grade) participated in the study in which the students were broken up into 2 groups, a PLM and a control group. The PLM group used the computers while the control group didn’t use the computers. When the PLM group used the computers they were able to see in recognizing algebraic functions and to transfer of Perceptual Learning improvements in information extraction to algebra problem solving to help the students be able to see and know what the question were saying. The result of the experiment showed that the students that used the perceptual learning modules did better than the control group that were using paper and pencil. Then in the other experiments conducted using students from different grades and different topics. The results were the same as the first experiment that was conducted. Then the authors did another experiment comparing the students that used paper and pencil to the students using the perceptual learning module software. In the third experiment conducted the students had a ball on top of the ruler and a billiard cue poised to strike it. The students had to find the distance traveled and the endpoint. The perceptual learning modules software was a way to help the students to find the cues to help students be able to understand the problems easier. In conclusion using the perceptual learning module software can be a positive thing for students but what about college students.

Discussion:

Would the perceptual learning module software work well for college students taking high level mathematics courses?

When it is appropriate to use technology as a tool-what determines the need?

## Recent Comments