$y’=\frac{x^3}{y^5}$
rewrite in form:
$y’+p(x)y=f(x)$
$y’y^5=x^3$
Integrate both sides with respect to x:
$\int y’ y^5 dx = \int x^3 dx$
$\int \frac{dy}{dx}y^5\frac{dx}{1}=\int x^3 dx$
$\int y^5 dy = \int x^3 dx$
implicit solution:
$\frac{y^6}{6}=\frac{x^4}{4}+c$
Leave a Reply