Tag Archives: webwork

Non-homogeneous Equation; Method of Undetermined Coefficients

                                                               Title 

Non-homogeneous Equation; Method of Undetermined Coefficients

                                                            Overview

           The topic is about Non-homogeneous equation, with method of undetermined Coefficients. For our better understanding we all should know what homogeneous equation is. Homogeneous equation is a differential equation, which is equal to zero. However, before we proceed to solve the Non-homogeneous equation, with method of undetermined Coefficients, we must look for some key factors into our differential equation. For example, the differential equations must be linear and should not be more than second order. The method of undetermined coefficients is a use full technique determining a particular solution to a differential equation with linear constant-Coefficient.

    Theorem

The form of the nonhomogeneous second-order differential equation, looks like this y”+p(t)y’+q(t)y=g(t) Where p, q and g are given continuous function on an open interval I. On the other hand, the homogenous part will look like, y’’+p(t)y’+q(t)y=0

Sample problem

A Sample Problem of Non-homogeneous Equation; Method of Undetermined Coefficients below:

  1. y” – 4y’+ 3y= – 168e7t , particular solution satisfying y(0)= 9 and y’(0)= -15.

Step 1:

Make this differential as a homogeneous differential equation

y” – 4y’+ 3y= 0 Note: The differential equation is now homogenous

Step 2:

Now we can write the homogenous differential to a characteristic equation.

r2­ – 4r + 3 = 0 Note: The differential equation is now characteristic polynomial.

Step 3:

Solve the characteristic equation

 r2­ – 4r + 3 = 0r2 – 3r – r +3 = 0r ( r -3 ) – 1 (r – 3)=0

(r – 3) ( r -1)=0

Note: 3 and 1 are the roots of the characteristic polynomial. After we find the roots of the polynomial, the Y1 and Y2 will take form of eat. However, there are some exceptions and we will address it later ( at the end of the page )
(r – 3)=0

r= 3

( r -1)=0

Or  r = 1

Y1 = e3t Y2 = et
y(t)= C1 e3t + C2 et Note: This is homogeneous part of solution. Where C1 and C2 are the arbitrary constants.

Step 4:

Guessing Table

If the right side g(t)     We will guess
  Ae7t                     Ce7t
Example: – 168e7t    Ce7t       Note: C is for arbitrary constants and e7t is from the differential equation.
A sin(t)                C sin (t) + D Cos (t)
A cos (t)         C sin (t) + D Cos (t)
  t2+ 7                    Ct2 + Dt + E

Step 5:

After appropriate guessing, now, we can process to solve the Non-homogeneous part of differential equation. Now we have to take the first and second derivative guess.

Guess:

Y(t) = Ce7t

y’ = C (7e7t )

y’’= C (49e7t)

Then plug in the y(t), y’(t) and y’’(t) into the original differential equation. In this case, we will plug it into y” – 4y’+ 3y= – 168e7t.

Non-homogeneous part of differential equation

y” – 4y’+ 3y= – 168e7t 

C (49e7t) – C (4*7e7t ) + C (3e7t)= – 168e7t

C =(- 168e7t)/(24e7t)

C = -7e7t

Note:   Non-homogeneous solution to   differential equation is -7e7t
Y(t)= C1 e3t + C2 et -7e7t  Note: General solution is ,Y(t)= C1 e3t +  C2et -7e7t

 

 

Step 6:

Particular solution

Condition I, y(0) = 9
9 = C1 + C2 – 7
9 + 7 = C1 + C2
C1 = 9 + 7 – C2
C1 = 9 + 7 – 7
C1 = 9

Note: Set 9 equal to our General solution, but make sure do not take the whole mathematical expression. Instated, take only arbitrary constants as a
C1 and C2. Then write the differential equation expression in tram of C1.

Condition II, y’(0) = – 15
Y (t) = C1e3t + C2 et -7e7t
y’ (t)= 3C1e3t + C2et – 49 e7t
-15 = 3C1 + C2 – 49
-15 = 3 ( 9 + 7 – C2 ) + C2 – 49
– 15 = 3 (16 – C2 ) + C2 – 49
– 15 = 48 – 3 C2 + C2 – 49
– 15 – 48 + 49 = – 3 C2 + C2
– 14 = – 2 C2
C2 = (- 14 )/(– 2 )
C2 = 7
Note: In condition II, we have to take our general solution y(t) then take the first derivative . Then Set y’(0)= -15 equal to Coefficients of the differential equation with arbitrary constants as a  C1 and C2. Then plug in the value of C1 into our new differential equation expression. Finally, solve for C2.
The particular solution of differential equation is : Y(t)= 9e3t + 7 et – 7e7t

 

CAUTION: (very important) In step 3, before writing homogeneous part of the solution, we have to consider some of the important facts. If homogeneous part of the solution , contain same roots or double roots, such as, if we would find r = 7 0r r= 7 and r = 7, then we must introduce another t into our homogeneous part of the solution . How to identify homogeneous part of the solution has single root or double roots? Good question. If value of r is same as g(t) or in another word , value of r and the exponent of Nonhomogeneous equation are same then it has single root . If two values of r are same as an exponent of Nonhomogeneous,g(t), equation, then it has double roots. {An example, if r= 7 then Y1 = (e7t)*t}. In another case, we might find complex roots such as,   r = -4 ± 3i then y(t) = C1 e– 4tcos(3t) + C2 e– 4t sin(3t), because of imaginary part 3i, we have Cos (3t) and Sin (3t).

 

If you still have any questions and concerns then please contact me at Rana.Das@mail.citytech.cuny.edu

Thank you,

Rana das

 

 

 

 

 

 

 

 

 

WeBWorK #9 UPDATE

Hi everyone,

Just a quick update – a few students had reported issues with some of the later problems in WeBWorK #9 (e.g. that the system would not accept a correct answer).  These problems have been resolved, and the problems should work correctly now – go ahead and try them again.  Carefully doublecheck the question to make sure the numbers have not changed before you proceed.

As a reminder, this assignment is due on Tuesday, 4/14.

Have a wonderful Spring Break,
Prof. Reitz

WeBWorK madness! — Assignment #9 extended to April 14th

Hi everyone,

I know you are all working very hard on the WeBWorK assignment #9.  As you have probably discovered:

  1. the problems can be quite long (especially the last couple!)
  2. a few students have run into WeBWorK bugs that incorrectly mark correct answers as “wrong” (I am working to resolve these currently, and hope to have them worked out in the next few days)

Because of this, I have extended this assignment until after Spring Break – it is now due (along with WeBWorK #11b) at the end of the day on Tuesday, April 14th.  Your focus right now should be preparing for the exam on Thursday – good luck!

Prof. Reitz

Undetermined Coefficients: What happens when everything cancels?

An excellent question that I received in email today with regards to WeBWorK #9:

Hi professor Reitz, on problem number two for the new homework, when I try to solve for the particular solution, everything on the left side cancels.

This will happen when the expression on the right side of the equation also happens to be one of the solutions to the homogeneous equation.  We deal with it in much the same way we dealt with repeated roots in homogeneous equations: When guessing the particular solution to the nonhomogeneous equation, multiply your guess by t (for example, use y=Cte^{t} instead of y=Ce^{t}.  Here’s an example.

Example: y''-7y'+10y = 10e^{2t}

The general solution to the associated homogeneous equation y''-7y'+10y=0 is:

General solution: y=Ae^{2t}+Be^{5t}

Notice that one of the basic solutions involves e^{2t}, which matches the right hand side of the original equation.  Because of this, we would make the following guess for a particular solution:

Guess: y=Cte^{2t}

Notice that when you take the derivative, you will still end up with a term involving just Ce^{2t} (without the extra “t”), which will allow the left hand side of the equation to equal the 10e^{2t} on the right side.

Let me know if you have any questions (post a comment!),
Prof. Reitz

WeBWorK extension

WeBWorK assignments #6, 7, 8, formerly due tonight, have been extended by two days.  They are now due this Thursday, 3/26, at midnight.

Regards,
Prof. Reitz

WeBWorK 6: What are these “basic solutions” in part c) of the questions??

Hi everyone,

Just a quick note about part c) in problems like these:

Screen Shot 2015-03-20 at 1.12.05 AM

 

The “basic solutions” refer to the two solutions that come from plugging the roots of the characteristic equation into our “best guess” formula y=e^{rt}.

For example, if the two roots are r=3, r=-5, then the basic solutions would be:

e^{3t}, e^{-5t}

Let me know if you have any followup questions  (or questions about anything else in the current WeBWorK assignment).

Regards,
Prof. Reitz

WeBWorK – how to enter infinity

Hi everyone,

It seems that entering “infinity” in WeBWorK can vary from problem to problem – but the most common versions are:

infty, -infty

infinity, -infinity

Inf, -Inf

I think the problems in this set prefer “infinity” and “-infinity”.

I was unaware of these variations – my apologies!  Let me know if you are still having trouble.

Regards,
Prof. Reitz

Getting Started with WeBWorK

WeBWorK is accessible from on and off campus, anywhere you have access to the internet.  Your first WeBWorK assignment, a review of important Calculus skills, is due next Tuesday, February  3th, at midnight. 

To get started, you must complete the following three steps.

Step 1.  Log in to WeBWorK here:  http://mathww.citytech.cuny.edu/webwork2/MAT2680-S15-Reitz/.  I have created Usernames and Passwords for each student registered for my class.

Username.  Your username for WeBWorK consists of your first initial plus your last name, all lowercase (for example, John Smith would have username ‘jsmith’).

Password.  Your temporary password is the same as your username (if your username is ‘jsmith’, your password is currently ‘jsmith’).

Step 2.  Change your password and update your email address.  To do this, select “Password/Email” from the main menu on the left.  Use whatever email address you like (I suggest using one that you check often).

Step 3.  Complete the first assignment, titled CalculusReview, by clicking on it on the main screen.

If you have any trouble – either with logging in, or with completing the assignment, post a comment here or send me an email and I will get back to you.

WeBWorK Tips:

  1. Click on a problem to see the details (the list of problems appears in the menu on the left).  Enter an answer and hit “Submit Answers”.  Don’t worry, if you get it wrong you can try it again.
  2. You can work on the problems in any order you wish.  You can do some problems now, and come back and do the rest another day (your work will be saved, as long as you submit your answers).
  3. If you want to print out a copy of the assignment, click on the assignment name in the main menu on the left, and then click the link in the main screen area that reads “Download a hardcopy of this homework set.”