Page 4 of 6

Week 8 Assignments

UPDATE: The due date for Chapters 6 and 7 has been extended to Tuesday, October 31.

Written work, Due Thursday, October 26, in class:
Chapter 6 p.116: 3,4,5,8,9
Chapter 7 p129: 5, 9, 10, 12
      **NOTE: this assignment is due on Thursday, instead of on Tuesday, because we have our second exam on Tuesday.
WeBWorK – none
OpenLab – none

 

In-Class Group Project Activity 10/12/16 – Make and Test Conjectures

NOTE: As a component of OpenLab #5, each person should bring to class a conjecture or question about the Bridges and Walking Tours game.

Group Activity (30 min).  Get into your groups, arrange your chairs in a circle, and take 30 minutes to:

1. Each person should share their conjecture with the group.  For each conjecture, the group should decide if they think it is true or false (or don’t know).  The group should record their conclusion for each conjecture.

2. Choose one conjecture (or create a new one) to focus on as a group.  Your goal for the next few weeks will be to try to prove or disprove this conjecture.  Come up with several ideas about how you might prove it.

Group work due after 30 minutes:  Each group will hand in a sheet of paper with the names of the group members, the date, and the following:
– Each member’s conjecture, along with a brief description of what the group thinks – is it true or false?
– Be sure to clearly indicate which of the conjectures the group has chosen to work on – or, if you have created a new conjecture to work on as a group, include that as well.
– Two different ideas about how you might try to prove the chosen conjecture.

Reflection:  To be completed individually after group work is complete, and submitted on paper with your names and the date.  Take 5 minutes to write on the following prompt:

Briefly reflect on the process of working in a group by responding to each of these points:
1.  Describe something you learned.
2.  Describe something you contributed to the group.
3.  How did today’s work change your understanding of your assigned game?

Week 7 Assignments

Written work, Due Tuesday, October 17th, in class:
Chapter 4 p.100: 1, 6, 7, 15, 16
Chapter 5 p.110: 1, 4, 9, 20*
Odd problems are worth 4 points, even problems worth 8 points.
* (Chapter 5 Problem 20 is optional – solutions will receive extra credit)   
WeBWorK 
– none
OpenLab – none

OpenLab #5: Lockhart’s Lament

In 2002, a mathematician named Paul Lockhart wrote an essay called “A Mathematician’s Lament,” a passionate criticism of mathematics education in America.  It has become widely known among mathematicians and mathematics educators – not everyone agrees with everything he says (though many do), but everyone seems to have something to say about “Lockhart’s Lament,” as it is called.  For this week’s assignment, you will read a short excerpt (three pages) from his essay and respond to the prompts below.

Assignment (Due Thursday, 10/12/17). Your assignment has three parts:

First, read the section titled “Mathematics and Culture” (pages 3-5) in Lockhart’s essay, (click here).  If you’re interested, I encourage you to read more, starting at the beginning – but this is not required.

Second, write a response to what you read and post it in the comments below.  Your response should be at least 300 words. Your response should represent your own thoughts and opinions on what you read, and can include responses to any or all of the following:

  • What is one thing that you agree with in the reading? Explain why.
  • What is one thing that you do not agree with? Explain.
  • Choose one quote that you think stands out in the reading.  Give the quote, and explain why you chose it.
  • Have you ever had an experience of mathematics as art?
  • On page 5, Lockhart describes mathematics in schools today as “heartbreaking”.  What do you think he means?  Do you agree? How do your own math experiences in school compare to his description?

Third, and most important, I want you to write down a conjecture about the Bridges and Walking Tours game, and bring it with you to class on Thursday 10/12 (do NOT post it here).  Consider Lockhart’s example of a triangle drawn inside a rectangle.  He described the process of playing around with this picture, until he arrives at the basic idea for calculating the area of a triangle.  He contrasts this with a traditional math class, in which the formula is given to students without providing them any opportunity to explore the problem on their own.  The bridges and walking tours game is a little like the triangle-rectangle picture – it’s fun to play around with, but you may not be sure what the point is.  You’ve had a chance to play with it a bit, and try some different challenges.  Now what?  Your job is write down a conjecture (a guess!) or a question about your game. If you could have one question answered about your game, what would it be? If you wanted to be a master of your game, and be able to solve any challenge that was given to you, what would you need to know? Write down a conjecture or question about the bridges and walking tours game, and bring it with you to class on Thursday 10/12 (do NOT post it here).

Here is an example: Let’s imagine that you have just been introduced to the game Tic-Tac-Toe.  After playing it for a while, you might come up with one of the following conjectures about Tic-Tac-Toe:
Conjecture: The person who goes first always wins.
Conjecture: The corner the best move.
Conjecture: It’s impossible to win, no matter who goes first.

ps.  Paul Lockhart retired from being a first-rate research mathematician in order to teach math at a private elementary school here in Brooklyn, Saint Ann’s School, where he says “I have happily been subversively teaching mathematics (the real thing) since 2000.”

In-Class Group Project Activity 10/5/17 – Puzzle Making

Group Activity (25 min).  Get into your groups (group assignments appear below), arrange your chairs in a circle, and take 25 minutes to:

1.  Share your responses to OpenLab #4.  Compare your answers to the given examples (do you all agree on the solutions?).  Now share your own puzzles with the group, and discuss.

2.  Create three new puzzles, as tricky as possible (try to stump Prof. Reitz!).

Group work due after 25 minutes:  Each group will hand in a sheet of paper with the names of the groups members, the date, and the three new puzzles created by the group.  You do not need to submit solutions, but you do need to be able to solve the puzzles on request.

Reflection:  To be completed individually after group work is complete, and submitted on paper with your name and the date.  Take 5 minutes to write on the following prompt:

Briefly reflect on the process of working in a group by responding to each of these points:
1.  Describe something you learned.
2.  Describe something you contributed to the group.
3.  How did today’s work change your understanding of your assigned game?

 

Group Assignments

Group 1: Zaniya, Neil, Kelly,
Group 2: Stephanie, Yasmine, Syed, Ahmad
Group 3: Evelin, Josvenia, Sonam, Miralia

OpenLab #4: Bridges and Walking Tours

The assignment below is due BEFORE CLASS on Thursday, October 5th (it is essential that you complete it before class, as we will be doing a class activity building on the assignment).

We are going to play a game creating walking tours of cities with bridges.  We begin in the city of King’s Mountain, which is built on four land masses – both shores of a river and two islands in midstream – connected by a total of seven bridges (shown in green).

EXAMPLE 1:  Can you create a walking tour of the city that crosses every bridge exactly once?  You can begin anywhere you like, and end anywhere you like, as long as you cross each bridge just once.

Background – Graph Theory

We can simplify the picture of King’s Mountain to make it easier to deal with:

The key elements of the map are the four land masses (let’s label them A, B, C, and D) and the seven bridges (p,q,r,s,t,u and v) (thanks to mathisfun.com for the images):

For the purposes of our problem, we can simply think about each land mass as a point (A, B, C, and D), and the bridges as lines connecting the points (p,q,r,s,t,u and v) – like this:

We call this kind of picture a graph – the points are called vertices and the the lines are called edges.  Our goal of finding “a walking tour that crosses each bridge once” is now matter of tracing out all the edges without lifting our pencil (and without repeating any edge).

Assignment, Due Thursday 10/5 (beginning of class)

Warm up (This Warm Up is just for practice – you do NOT need to submit your answers – see below for the three-part Assignment to be submitted).  The following examples build on EXAMPLE 1 above.

WARM-UP EXAMPLE 2: If you are given the freedom to build one new bridge in King’s Mountain (“make one new edge in the graph”), can you do it in such a way the walking tour becomes possible?  Do it!

WARM-UP EXAMPLE 3: If you are given the freedom to destroy one bridge (“erase one edge”), can you do it in such a way that the walking tour becomes possible? Do it!

WARM-UP EXAMPLE 4: Construct walking tours for each of the following graphs (or decide if it is impossible).


Assignment.  Your assignment has 4 parts.

PART 1.  Leave a comment responding to EXAMPLE 4 (above), telling us for each one of the 8 graphs whether a walking tour is possible or not.  You only have to state whether it is possible or impossible for each one.

PART 2.  Challenge your friends:  Now it’s up to you to build your own graph, and challenge your classmates to construct a walking tour (or to determine if it is impossible).  It can consist of as many points as you wish, and as many bridges (edges) connecting them.  You MUST label your points “A, B, C…” etc.  When you’re finished, decide for yourself if a walking tour crossing each bridge exactly once is possible.   Remember, the most challenging puzzles are the ones where the answer is difficult to determine. Post two puzzles in the comments.  See the note  “POSTING YOUR PUZZLE ONLINE” below for instructions on how to draw and share graphs online.

PART 3.  Solve a friend’s puzzle.  Leave a response to a friend’s posted puzzle, giving a solution.  TO POST A SOLUTION, JUST LIST THE POINTS OF YOUR WALKING TOUR IN ORDER.

Example:
Here is a puzzle: http://sketchtoy.com/67467551
Here is a solution: (start at A) – A, B, D, A, E, B, C, E

PART 4.  The third part of your assignment is to write a short paragraph (at least 3 sentences) responding to the following prompt.  Be sure to respond to each part:

Writing Prompt:  Did you enjoy this assignment? Why or why not?  Describe a connection between this assignment and our work in the class.  (If you don’t believe there is a connection, try to imagine why we are doing this).  Leave your response in the comments.

POSTING YOUR PUZZLE ONLINE.  I recommend the site sketchtoy.com – it allows you to draw something, then click “SAVE” and get a link to your drawing.  You can post the link in a comment, and we’ll be able to click on it and view your drawing.   Don’t worry if it’s not pretty!  For example, here is a graph that I drew (can you find a walking tour that crosses all edges?): http://sketchtoy.com/67467556

 

Week 5 Assignments

Week 5 Assignments

Exam #1 will take place on Thursday, 9/28

Written work – none
WeBWorK – Assignment #4, due Tuesday, October 3rd, at midnight. You are encouraged to start working on Assignment #5, which will be due one week later.
OpenLab – OpenLab #4, due Thursday, October 5th, at the start of class

 

« Older posts Newer posts »