Author: Jonas Reitz (Page 2 of 5)

Semester Project – Group Presentations: Description and Grading Criteria

The last significant group assignment for your semester project is a group presentation (there will be one more individual assignment, a reflection on the process).  I’ll put the details here, followed by an outline of the grading criteria (the presentation is worth 20 points total).

Semester Project – Group Presentation

This is your chance to share your group’s work with the rest of the class.  Each group will give a 5-8 minute presentation, including the following items:

  • State your conjecture (this should be written down, either on a slide or on the board).  Give an explanation, and an example to demonstrate your conjecture.
  • If you were able to prove your conjecture, give a proof.  If not, describe briefly some of the ideas you had and strategies you tried while trying to prove it.
  • Give the class at least one puzzle to work on on their own – a challenge!
  • Give the audience a chance to ask questions (either during the presentation, or after).

Keep in mind the following:

  • You must include some kind of slides (you may also put work on the board):  PowerPoint, Google Slides, Prezi.com, LaTeX Beamer, or other.
  • You may decide as a group how to divide up the work, but each group member must present something to class.
  • Be aware that you will be asked at a later time to describe your own specific contributions as well as those of each group member.
  • Presentations will be given at the beginning of class on Tuesday, 12/5 and Thursday, 12/7.  Your group must sign up for a presentation time before leaving class on 11/14.

 

Grading Criteria (20 points total)

_____ points (4 possible).  Basics.  Stay within time limits (5-8 minutes). All group members participate.

_____ points (6 possible).  Conjecture.  Conjecture is written down.  Explanation and example are provided.

_____ points (7 possible).  Proof of conjecture or proof process description.

_____ points (3 possible).  Challenge the class.  At least one puzzle is given for the class to work on on their own.

 

____ points TOTAL (20 possible)

 

Week 12 Assignments

Written work, due Tuesday, November 28th, in class:
Section 11.0 p178: 3,4
WeBWorK – Assignment 6, due Tuesday, November 28th, at end of day.
OpenLab – none

Project – Initial Draft of paper due in class this Thursday, 11/16 (feedback will be sent by email to group members).
Final Draft of paper due in class on Tuesday, 12/5.
Group Presentations on Tuesday, 12/5 and Thursday, 12/7.

Group Process Paper – Grading Criteria

Hi everyone,

The group process paper will be worth 35 points towards your Project grade.  I will be filling out the sheet below for each paper submitted.  Please let me know if you have any questions.

Best,
Prof. Reitz

 

Semester Project – Group Process Paper
Grading Criteria

_____ points (3 possible).  Basics/formatting.  Length (1500 words required).  Group members names.  Semester/Date/Course.

_____ points (2 possible).  Puzzle description. Description given in own words, demonstrates understanding of puzzle mechanics.

_____ points (16 possible).  Proof process narrative.

_____ points (4 possible).  Shows progress across various stages of the project.  

_____ points (4 possible).  Includes all participating members of the group.  

_____ points (4 possible).  Includes objective facts (“what we did”) as well as experience (“how it felt, what it was like”).  

_____ points (4 possible).  Tells a story.

_____ points (5 possible).  Conjecture.

_____ points (3 possible).  State your group’s conjecture.

_____ points (2 possible).  Proof or disproof of conjecture. If no proof or disproof was obtained, these points can be earned by clear explanation of proof process in the preceding account.

_____ points (9 possible).  Images (3 points each).  Original or clearly attributed.  Includes caption.  Connection to puzzle/process is evident.  

 

____ points TOTAL (35 possible)

 

 

Exam #3 Review is posted

Hi everyone,

The review sheet for Exam #3, taking place next Thursday 11/16, is posted under Classroom Resources / Exam Reviews.  As always, if you have any questions or notice any errors please let me know (by email, in person, or here on the OpenLab).

Best,
Prof. Reitz

Week 11 Assignments

Written work – Due Tuesday, November 14, in class:
Chapter 10 p167: 1, 2, 5, 10, 15
Chapter 10 p167: 25, 28, 30
WeBWorK – none
OpenLab – none

Project – First draft of your group paper is due in class on Thursday, 11/16.

EXAM #3 will take place on Thursday, 11/16.

Semester Project – Group Process Paper

In his essay A Mathematician’s Lament, Paul Lockhart says “A good problem is something you don’t know how to solve.” This is quite different from most of the “problems” that appear in our mathematics education.  In the past weeks, you’ve all spent some time individually and in groups working on such problems, in the context of graph theory (“Bridges and Walking Tours”).

As a group, write an account of your experiences working on your puzzle/problem.  You should include the following elements:

  • Description of the Bridges and Walking Tours problem, in your own words.
  • An account of working on your problem as a group, from playing with the problem to formulating and perhaps proving a conjecture.  What did your group do/think/feel?  You can include examples of puzzles and solutions if you wish, as well as work by individual group members completed outside the group (both optional).  Your goal is not to go over every detail, but to tell a story that your readers will enjoy – “what was it like”?.
  • A statement of your group’s chosen conjecture, and a proof (or disproof) of the conjecture.
  • At least three images (more if you wish).  They can include images of puzzles you’ve created or solutions, but you can also be creative with images or photos related to your puzzle, your group or your story in some way.  Each image should have a caption describing.  NOTE: You may freely use your own drawings, images or photos.  If you wish to use photos from another source, they must be from a legal source (for example, Creative Commons licensed, with proper attribution – the library or your professor can help with this).
  • Basic details: the names of all group members, the date, course and section numbers, and your professor’s name.

I will be meeting with each group next Thursday, November 9th, in class.  Please be in touch with your other group members before then!  Be prepared to discuss your progress so far – at the very least, you should be able to describe how you are dividing up the work of the paper among your group.

The first draft of this assignment is due in class on Thursday, November 16.  Each group should submit one paper, of no less than 1500 words.  You may decide as a group how to divide up the work.  Be aware that you will be asked at a later time to describe your own specific contributions as well as those of each group member.

The final draft of this assignment is due in class on Tuesday, December 5.

REGARDING SEMESTER PROJECT:  As you may recall from the Course Description, the semester project is worth 10% of your overall grade.  The project consists of a number of interrelated activities (many of which have already been completed) – complete details can be found on the Project Overview & Deliverables page.  The group paper assigned here forms a significant portion of the project.

OpenLab #7: Hold your breath and dive into math – Vi Hart

Vi Hart describes herself as a “recreational mathemusician” – she has a unique approach to mathematics and its connections to the world.  In this assignment you’ll be exploring some of her videos (she has a YouTube channel here), and using them as a basis for creating a new blog post.

Assignment (Due November 9, 2016).  Create a new blog post responding to the instructions below. Creating a new blog post allows you more flexibility than simply leaving a comment. You have the ability to edit your work after you submit it, and to include photos, videos and other media. It also allows you to contribute to the public content of our course website.

You can get started by clicking the plus sign at the very top of our site (if you don’t see it, make sure you are logged in to the OpenLab). Detailed instructions on creating a new blog post can be found here (see “Writing a Post” in the middle of the page). You should create a new post including the following:

  • The title should include the word “Videos” and also your name.
  • Your post should include responses to all three parts of the assignment described below.
  • Under “Category,” select “OpenLab Assignments” (you will see this on the right side of the screen)
  • Under tags, enter “OpenLab 8”, “Vi Hart”, and any other tags you think describe the videos you watched (for example, you might choose “pi” if it’s a video about pi).  Don’t forget to click “Add” after entering your tags in the box.
  • When you’re done, click “Publish” (the blue button towards the top right on the screen).

Instructions:

Watch at least three different videos by Vi Hart from  https://www.youtube.com/user/Vihart/ .  You should:

  • choose videos at least 2 minutes in length
  • choose videos that are related to math in some way
  • choose three videos, at least two of which should not appear on her front page (older or less popular videos).  For a full list of her videos, click the “Videos” button near the top of her page – or click here.  Scroll to the bottom and click “Load more” to see older videos.

In your post, include a response to each of the following three Parts:

Part 1. Include a link to each video you watched (3 minimum), the title, and a one or two sentence description of what the video was about.

Now choose one video to focus on.  You MUST watch it 3 times. Use it as the basis for parts 2 and 3.

Part 2.  Write one paragraph discussing the contents of the video:

  • How did you feel watching it? Did you like it, or not? Were you confused? Inspired? Bored? Excited? Bewildered?  Why?
  • What is one thing you learned from the video?
  • What is one question you have after watching it?

Part 3.  Write a one-paragraph reflection discussing what the video could mean to your own math teaching.  Is it math? Is it teaching? Is it relevant to the work you will be doing in the classroom? Is there any connection to the earlier reading assignment Lockhart’s Lament?  Any other thoughts?

Extra Credit.  You can earn extra credit by responding to one of your classmates’ posts.  As always, be kind, be respectful, be honest.

OpenLab #6: Proof Journal

Your assignment for the next week is to try to prove the conjecture that your group created in class on Tuesday, 10/12/15.  You may need to refine/expand your conjecture first (let’s discuss this in class).   You must spend at least 90 minutes working on this.  Trying to prove something can consist of many different activities, such as the following (you do NOT have to do all of these things – you can choose how to spend your time – they are provided for inspiration only).

  • coming up with ideas, and testing them out (for example, by creating puzzles and trying to solve them)
  • trying to understand what the conjecture says
  • trying to solve puzzles that other people created
  • trying to create puzzles (and solve them yourself)
  • communicating with other members of your group (talking, emailing, etc.)
  • trying to write down a proof
  • other stuff…

As you work, keep track of what you are doing, thinking, and feeling (this is metacognition – an idea that discussed way back in OpenLab #2).  What did you do during the time you spent?  Did you create any puzzles?  Did you solve puzzles?  Did you change your mind about whether the conjecture is true or false?   Did you have any new ideas about how to prove the conjecture?  Did you have any ideas that you gave up on?  How did you feel as you worked – were you frustrated/confused/happy/depressed? Why? Did your mood change along the way?

Assignment (Due Thursday, 11/2/15):  Submit a journal of your efforts in the comments below.  Your response should be at least 300 words.  Describe what you did during the 90 minutes you worked, and express in some way what you were thinking and feeling during the process.  Your response can include puzzles (use sketchtoy.com) or other work you did along the way.

Extra Credit.  Respond to a fellow student’s comment.  Did you do similar things? Different things? Do you have any suggestions for them? Be kind.

 

 

GROUP CONJECTURES (Updated in class 10/24):

GROUP 1: Neil, Kelly, (Zaniya)

Group 1 Conjecture - REVISED

GROUP 2: Stephanie, Yasmine, Ahmad, Syed

Group 2 Conjecture - REVISED

 

GROUP 3: Evelin, Josvenia, Sonam, Miralia

Group 3 Conjecture - REVISED

 

GROUP CONJECTURES (Original):

GROUP 1: Neil, Kelly, (Zaniya)

 

Group 1 Conjecture

 

GROUP 2: Stephanie, Yasmine, Ahmad, (Syed)

Group 2 Conjecture

 

GROUP 3: Evelin, Josvenia, Sonam, Miralia

Group 3 Conjecture

« Older posts Newer posts »