Faculty: You can include your course schedule here by starting with this template and adding in dates for each session, or making other changes as desired. To edit the data in the schedule, follow this link (only you, the course admin, have access). Please delete this informational block when you are ready to share your site with your students. For help working with OpenLab Course sites, visit OpenLab Help.

SessionDateTopicWeBWorKHomework
14.10 Antiderivatives (p. 485 – 496)
[Volume 1]
P. 497: 465, 470, 471, 476, 477, 481, 484, 490, 492, 493,
495, 496, 499, 500, 501
21.2 The Definite Integral (p. 27 – 39)
1.3 The Fundamental Theorem of Calculus (p. 50 – 57)
P. 42: 71, 73, 75, 76, 77, 80, 88, 89, 90, 92
P. 60: 170, 171, 172, 182, 183, 184, 187
31.5 Substitution (p. 82 – 89)
1.6 Integrals Involving Exponential and Logarithmic Functions (p. 94 – 96, 98 - 102)
P. 90: 256, 258, 261, 265, 271, 273, 275, 276, 292, 293
P. 103: 320, 321, 322, 325, 327, 328, 330, 332, 335, 337,
338, 355 – 363 all
43.1 Integration by Parts (p. 261 – 268)P. 270: 7, 8, 13, 15, 16, 19, 20, 27, 31, 38, 42, 43, 45
53.2 Trigonometric Integrals (p. 273 – 282)P. 283: 73, 74, 78 – 85 all, 91, 97, 98, 100
63.3 Trigonometric Substitution (p. 285 – 293)P. 296: 126, 128, 135 – 143 odd, 147 – 153 odd
73.3 Trigonometric Substitution (continued)
[cover problems #132 on p. 196 and #164 on p. 297]
P. 296: 131, 133, 134, 160 – 163 all, 164
8First Examination
93.4 Partial Fraction Decomposition (p. 298 – 303)P. 308: 183, 185, 187, 196, 197, 199, 200 – 204 all
103.4 Partial Fraction Decomposition (cont.) (p. 303 – 306)P. 308: 189, 198, 205, 206, 207, 209 – 212 all, 215, 217
113.7 Improper Integration (p. 330 – 340)P. 343: 347 – 373 odd
126.3 Taylor and Maclaurin Polynomials (p.562--567)P. 578: 118β€”123 all
136.3 Taylor and Maclaurin Polynomials (continued) (p.567--573)P. 578: 125, 127, 28, 133, 135
14Midterm Examination
155.1 Sequences (p.427--444)P. 447: 1, 3, 7, 9, 12, 13--15 odd, 23--37 odd, 47--51 odd
165.2 Infinite Series (p.450--459)P. 466: 67--74, 76, 77, 79, 80, 83--85 odd, 89β€”95 odd
175.3 The Divergence and Integral Tests (p.471--478)P. 482: 138, 139--145 odd, 152β€”155, 158, 159, 161, 163
185.4 Comparison Tests (p.485--492)P. 493: 194β€”197all, 199, 200, 202, 204β€”206 all, 211
(optional: 222-223)
195.5 Alternating Series (p.496--502)P. 505: 250--257 all, 261β€”264 all, 266, 267
205.6 Ratio and Root Tests (p.509--519)P. 522: 317--320 all, 323, 325, 328, 329--335 odd, 349, 351
216.1 Power Series and Functions (p.531--537)
6.2 Properties of Power Series (p.544--548, 552--557)
P. 541: 13-21 odd, 24, 28
P. 558: 87β€”90 all, 96, 97
226.3 Taylor and Maclaurin Series (p.561--562, 573--576)
6.4 Working with Taylor Series (p.584--587, 590--592)
P. 578: 118-123 all, 140β€”147 all, 151β€”155 all
P. 596: 203, 206, 207, 209, 219--223 odd
23Third Examination
241.1 Approximating Areas (p. 5 – 20)P. 21: 1 – 7 odd, 12, 15, 16, 17
252.1 Areas Between Two Curves (p. 122 – 128)P. 131: 1 – 7 all, 11, 15 – 21 all, 23
P. 271: 63
262.2 Determining Volumes by Slicing (p. 141 – 149)P. 150: 58, 59, 74 – 80 all, 98 – 102 all
Find the volume of the solid obtained by rotating the region bounded by the curves y = x2, y = 12-x, x = 0 and x β‰₯ 0
about (a) the x–axis; (b) the line y = -2; (c) the line y = 15;
(d) the y-axis; (e) the line x = -5; (f) the line x = 7.
272.3 Volumes of Revolution: Cylindrical Shells (p. 156 – 165)P. 166: 120 – 131 all, 140-143 all, 145, 148, 158, 159
P. 271: 61
282.4 Arc Length of a Curve and Surface Area (p. 169 – 179)P. 180: 165, 166, 171, 173, 174, 176, 177, 191, 192
P. 284: 119
29Review
30Final Examination

To edit the schedule, click here (instructor only).

Print this page