Category Archives: Research

Research talks.

DDoS: a 20-year journey from compromised workstations to IoT attacks

Sven Dietrich

Math & Computer Science Dept.

John Jay College of Criminal Justice

April 11, 12pm-1pm

Room N923

 

In this 20-year retrospective, we discuss some of the challenges of dealing with distributed denial-of-service (DDoS) attacks from its origins in 1999 to the recent attacks in the late 2010s.  We describe first architectures of DDoS agents, the challenges of DDoS agent/bot forensics, the variety of topologies and command-and-control mechanisms for botnets over the years, the different victim populations from scientific workstations to IoT devices, future and current Internet design considerations, as well as attack and defense mechanisms at the host and network levels.

 

Eager Execution in TensorFlow

Alexandre Passos

Software Engineer Google

April 12, 12pm-1pm Room N923

 

 

 

 

In this talk we’ll go over TensorFlow, an open- source cross-platform machine learning library developed by Google, and explore its new feature: eager execution. We’ll go over how to use it to write dynamic models, to debug and profile models, and to learn deep learning.

Presentation Video

Applied AI Techniques

 

Will Ross

Business Development, M& A

IBM Watson Group

 

In a world of open data and consumer platforms it is easy to forget the significant quantities of high-value data still held by entities who view or require those assets to be proprietary. A myriad of parties from corporations to government entities are keen to explore new advances in AI but do not recognize the challenges that will befall them as they try to protect the data assets that are their lifeblood. ‘Applied AI’ is the study of the novel techniques required to translate AI innovations into agents of value creation for this silent majority. We’ll explore the limitations of today’s most commonly applied AI techniques and discuss a variety of ways institutions are accommodating these shortfalls. We’ll also spend some time on exciting new results in the nascent field of few shot learning to inspire further hope for the future and show that there is core innovation in AI still to be accomplished.

 

Presentation Video

 

Energy Management as a Service (EmaaS): Design, Analysis and Realization


Yu-Wen Chen, PhD
Assistant Professor, CST Dept.
December 7, 12pm-1pm, Room N907

Dr. Chen presents an introduction to smart grid and cloud computing as the foundation for the design of customer-oriented energy-efficient systems (EmaaS). These systems provide financial incentives to customers thus enhancing the renewable energy sources(solar, wind, electrical) integration with the smart grid community.

Slides for talk on Ontology-based Classification and Faceted Search Interface for APIs

Slides for the talk on Ontology-based Classification and Faceted Search Interface for APIs are now available.

Ontology-based Classification and Faceted Search Interface for APIs

Ontology-based Classification and Faceted Search Interface for APIs

APRIL 7 @ 12:00 PM1:00 PM in N928

KNARIG ARABSHIAN

Hofstra University Department of Computer Science

This work introduces faceted service discovery. It uses the Programmable Web directory as its corpus of APIs and enhances the search to enable faceted search, given an OWL ontology. The ontology describes semantic features of the APIs. We have designed the API classification ontology using LexOnt, a software we have built for semi-automatic ontology creation tool. LexOnt is geared toward non-experts within a service domain who want to create a high-level ontology that describes the domain. Using well- known NLP algorithms, LexOnt generates a list of top terms and phrases from the Programmable Web corpus to enable users to find high-level features that distinguish one Programmable Web service category from another. To also aid non-experts, LexOnt relies on outside sources such as Wikipedia and Wordnet to help the user identify the important terms within a service category. Using the ontology created from LexOnt, we have created APIBrowse, a faceted search interface for APIs. The ontology, in combination with the use of the Apache Solr search platform, is used to generate a faceted search interface for APIs based on their distinguishing features. With this ontology, an API is classified and displayed underneath multiple categories and displayed within the APIBrowse interface. APIBrowse gives programmers the ability to search for APIs based on their semantic features and keywords and presents them with a filtered and more accurate set of search results.

Knarig Arabshian is an Assistant Professor in the Computer Science Department at Hofstra University, since Fall 2014. Prior to that she was a Member of Technical Staff at Bell Labs in Murray Hill, NJ. She received her Ph.D. in Computer Science from Columbia University in 2008.

Professor Arabshian’s interests lie in the field of semantic web, service discovery and composition, context-aware computing and distributed systems. The goal of her research is to drive forward the idea of a personalized web. Her work explores ways of describing data meaningfully and designing frameworks and systems for efficient data discovery. During her tenure at Bell Labs, she worked on different aspects of ontology creation, distribution and querying.

DETAILS

Date:
April 7
Time:
12:00 pm – 1:00 pm
Event Category:
Event Tags:
, , ,, ,

VENUE

N928
300 Jay St., Room N928
Brooklyn, NY 11201 United States
+ Google Map
Phone:
718-260-5170
Website:
http://www.citytech.cuny.edu/academics/deptsites/cst

ORGANIZER

Computer Systems Technology Colloquium Series
Phone:
(718) 260-5170
Email:
Website:
https://openlab.citytech.cuny.edu/cstcolloquium

SLIDES

Bio-inspired Computation Approach for Tumor Growth with Spatial Randomness Analysis of Kidney Cancer Xenograft Pathology Slides

Bio-inspired Computation Approach for Tumor Growth with Spatial Randomness Analysis of Kidney Cancer Xenograft Pathology Slides

MARCH 10 @ 12:00 PM1:00 PM

AYDIN SARIBUDAK

Electrical Engineering Department, City College of New York, City University of New York

In our research, we analyze digitized images of Hematoxylin-Eosin (H&E) slides equipped with tumorous tissues from patient derived xenograft models to build our bio-inspired computation method, namely Personalized Relevance Parameterization of Spatial Randomness (PReP-SR). Applying spatial pattern analysis techniques of quadrat counts, kernel estimation and nearest neighbor functions to the images of the H&E samples, slide-specific features are extracted to examine the hypothesis that existence of dependency of nuclei positions possesses information of individual tumor characteristics. These features are then used as inputs to PReP-SR to compute tumor growth parameters for exponential-linear model. Differential evolution algorithms are developed for tumor growth parameter computations, where a candidate vector in a population consists of size selection indices for spatial evaluation and weight coefficients for spatial features and their correlations. Using leave-one-out-cross-validation method, we showed that, for a set of H&E slides from kidney cancer patient derived xenograft models, PReP-SR generates personalized model parameters with an average error rate of 13:58%. The promising results indicate that bio-inspired computation techniques may be useful to construct mathematical models with patient specific growth parameters in clinical systems.

Aydin Saribudak  received his Bachelor of Science degree, in 2005, from Electrical and Electronics Engineering Department of Middle East Technical University (METU), Turkey. After his graduation, he worked as software developer and researcher in telecommunication field for more than 5 years. Aydin is currently a Ph.D. candidate at the City College of the CUNY. His interests include biologically inspired computation algorithms, artificial intelligence, and their applications to personalized mathematical models for tumor growth and anti-cancer therapy.

DETAILS

Date:
March 10
Time:
12:00 pm – 1:00 pm
Event Category:
Event Tags:
, , , ,, , ,

VENUE

N928
300 Jay St., Room N928
Brooklyn, NY 11201 United States
+ Google Map
Phone:
718-260-5170
Website:
http://www.citytech.cuny.edu/academics/deptsites/cst

ORGANIZER

Computer Systems Technology Colloquium Series
Phone:
(718) 260-5170
Email:
Website:
https://openlab.citytech.cuny.edu/cstcolloquium

Slides for today’s talk on improving interface modularity in legacy Java software through automated refactoring

Towards Improving Interface Modularity in Legacy Java Software Through Automated Refactoring

Towards Improving Interface Modularity in Legacy Java Software Through Automated Refactoring

Raffi Khatchadourian

Department of Computer Systems Technology, New York City College of Technology, City University of New York

MARCH 3 @ 12:00 PM – 1:00 PM in N928

The skeletal implementation pattern is a software design pattern consisting of defining an abstract class that provides a partial interface implementation. However, since Java allows only single class inheritance, if implementers decide to extend a skeletal implementation, they will not be allowed to extend any other class. Also, discovering the skeletal implementation may require a global analysis.

Java 8 enhanced interfaces alleviate these problems by allowing interfaces to contain (default) method implementations, which implementers inherit. Java classes are then free to extend a different class, and a separate abstract class is no longer needed; developers considering implementing an interface need only examine the interface itself.

In this talk, I will argue that both these benefits improve software modularity, and I will discuss our ongoing work in developing an automated refactoring tool that would assist developers in taking advantage of the enhanced interface feature for their legacy Java software.

Raffi Khatchadourian is an Assistant Professor in the Department of Computer Systems Technology (CST) at New York City College of Technology (NYCCT) of the City University of New York (CUNY) and an Open Educational Resources (OER) Fellow for the Spring 2016 semester. His research is centered on techniques for automated software evolution, particularly those related to automated refactoring and source code recommendation systems. His goal is to ease the burden associated with correctly and efficiently evolving large and complex software by providing automated tools that can be easily used by developers.

Raffi received his MS and PhD degrees in Computer Science from Ohio State University and his BS degree in Computer Science from Monmouth University in New Jersey. Prior to joining City Tech, he was a Software Engineer at Apple, Inc. in Cupertino, California, where he worked on Digital Rights Management (DRM) for iTunes, iBooks, and the App store. He also developed distributed software that tested various features of iPhones, iPads, and iPods.

DETAILS

Date:
March 3
Time:
12:00 pm – 1:00 pm
Event Category:
Event Tags:
, , , , ,, , , ,

VENUE

N928
300 Jay St., Room N928
Brooklyn, NY 11201 United States
Phone:
718-260-5170
Website:
http://www.citytech.cuny.edu/academics/deptsites/cst

ORGANIZER

Computer Systems Technology Colloquium Series
Phone:
(718) 260-5170
Email:
Website:
https://openlab.citytech.cuny.edu/cstcolloquium

Two Projects in Text Data Mining and Natural Language Processing

Two Projects in Text Data Mining and Natural Language Processing

ELENA FILATOVA

Department of Computer Systems Technology, New York City College of Technology, City University of New York

FEBRUARY 25 @ 12:00 PM1:00 PM in N928

In this presentation I will describe two projects I am working on: Automatic Sarcasm Detection and Information Assymetries in Multilingual Wikipedia.

Sarcasm detection: Humans are good at identifying sarcasm in text and speech. Can we teach a computer to identify sarcasm? Is it possible to point out the parts of the review that make it sarcastic? To answer these questions I use a corpus of sarcastic and regular Amazon product reviews. I analyze the sentiment flow of these reviews and demonstrate that classification features based on sentiment flow can be used to reliably classify documents into sarcastic and non-sarcastic.

Multilingual Wikipedia: Wikipedia is currently used as THE source of information without doubting the quality of this information. However, the Wikipedia articles corresponding to the same entry (person, location, event, etc.) written in different languages have substantial differences regarding what information is included in these articles. I discuss the nature of information assymetries in Multilingual Wikipedia and outline my plan for using information assymetries for automatic extension of Wikipedia articles.

Bio: Dr. Filatova is an Assistant Professor in the Computer Systems Technology department at CUNY CityTech since Fall 2015. Prior to that she was a faculty member at the Forhdam CIS department. She received her Ph.D. in Computer Science from Columbia University in 2008

DETAILS

Date:
February 25
Time:
12:00 pm – 1:00 pm
Event Category:
Event Tags:
, , , , ,

VENUE

N928
300 Jay St., Room N928
Brooklyn, NY 11201 United States
+ Google Map
Phone:
718-260-5170
Website:
http://www.citytech.cuny.edu/academics/deptsites/cst

ORGANIZER

Computer Systems Technology Colloquium Series
Phone:
(718) 260-5170
Email:
Website:
https://openlab.citytech.cuny.edu/cstcolloquium