Below you will find complete solutions for the Example given the previous post – you can use this to test your project.
Example. Given the differential equation and initial condition , approximate the value of using step size
ACTUAL ANSWER: y(2.5) = 3.49201…
Euler’s Method | |||||
i | h | x_i | y_i | k = f(x_i,y_i) | y_(i+1) |
0 | 0.05 | 1.5 | 2.2 | 0.6 | 2.23 |
1 | 0.05 | 1.55 | 2.23 | 0.67425 | 2.2637125 |
2 | 0.05 | 1.6 | 2.2637125 | 0.74903 | 2.301164 |
3 | 0.05 | 1.65 | 2.301164 | 0.8240397 | 2.342365985 |
4 | 0.05 | 1.7 | 2.342365985 | 0.8989889128 | 2.387315431 |
5 | 0.05 | 1.75 | 2.387315431 | 0.9735989982 | 2.435995381 |
6 | 0.05 | 1.8 | 2.435995381 | 1.047604158 | 2.488375588 |
7 | 0.05 | 1.85 | 2.488375588 | 1.120752581 | 2.544413217 |
8 | 0.05 | 1.9 | 2.544413217 | 1.192807443 | 2.60405359 |
9 | 0.05 | 1.95 | 2.60405359 | 1.26354775 | 2.667230977 |
10 | 0.05 | 2 | 2.667230977 | 1.332769023 | 2.733869428 |
11 | 0.05 | 2.05 | 2.733869428 | 1.400283836 | 2.80388362 |
12 | 0.05 | 2.1 | 2.80388362 | 1.465922199 | 2.87717973 |
13 | 0.05 | 2.15 | 2.87717973 | 1.52953179 | 2.95365632 |
14 | 0.05 | 2.2 | 2.95365632 | 1.590978049 | 3.033205222 |
15 | 0.05 | 2.25 | 3.033205222 | 1.650144125 | 3.115712428 |
16 | 0.05 | 2.3 | 3.115712428 | 1.706930708 | 3.201058964 |
17 | 0.05 | 2.35 | 3.201058964 | 1.761255718 | 3.289121749 |
18 | 0.05 | 2.4 | 3.289121749 | 1.813053901 | 3.379774445 |
19 | 0.05 | 2.45 | 3.379774445 | 1.862276305 | 3.47288826 |
20 | 0.05 | 2.5 | y(2.5) = 3.47288826 |
Improved Euler’s Method | |||||||
i | h | x_i | y_i | k1 | z_(i+1) | k2 | y_(i+1) |
0 | 0.05 | 1.5 | 2.2 | 0.6 | 2.23 | 0.67425 | 2.23185625 |
1 | 0.05 | 1.55 | 2.23185625 | 0.6728114063 | 2.26549682 | 0.7476025438 | 2.267366599 |
2 | 0.05 | 1.6 | 2.267366599 | 0.746106721 | 2.304671935 | 0.8211456538 | 2.306547908 |
3 | 0.05 | 1.65 | 2.306547908 | 0.8195979758 | 2.347527807 | 0.8946013641 | 2.349402892 |
4 | 0.05 | 1.7 | 2.349402892 | 0.8930075421 | 2.394053269 | 0.9677033899 | 2.395920665 |
5 | 0.05 | 1.75 | 2.395920665 | 0.9660694182 | 2.444224136 | 1.040198278 | 2.446077357 |
6 | 0.05 | 1.8 | 2.446077357 | 1.038530378 | 2.498003876 | 1.111846414 | 2.499836777 |
7 | 0.05 | 1.85 | 2.499836777 | 1.110150981 | 2.555344326 | 1.18242289 | 2.557151124 |
8 | 0.05 | 1.9 | 2.557151124 | 1.180706432 | 2.616186446 | 1.251718216 | 2.61796174 |
9 | 0.05 | 1.95 | 2.61796174 | 1.249987303 | 2.680461105 | 1.319538895 | 2.682199895 |
10 | 0.05 | 2 | 2.682199895 | 1.317800105 | 2.7480899 | 1.385707852 | 2.749787594 |
11 | 0.05 | 2.05 | 2.749787594 | 1.383967716 | 2.81898598 | 1.450064721 | 2.820638405 |
12 | 0.05 | 2.1 | 2.820638405 | 1.448329675 | 2.893054889 | 1.512465995 | 2.894658297 |
13 | 0.05 | 2.15 | 2.894658297 | 1.510742331 | 2.970195413 | 1.572785045 | 2.971746481 |
14 | 0.05 | 2.2 | 2.971746481 | 1.571078871 | 3.050300425 | 1.630912022 | 3.051796253 |
15 | 0.05 | 2.25 | 3.051796253 | 1.629229215 | 3.133257714 | 1.686753629 | 3.134695825 |
16 | 0.05 | 2.3 | 3.134695825 | 1.685099802 | 3.218950815 | 1.740232793 | 3.220329139 |
17 | 0.05 | 2.35 | 3.220329139 | 1.738613261 | 3.307259802 | 1.791288237 | 3.308576677 |
18 | 0.05 | 2.4 | 3.308576677 | 1.789707988 | 3.398062076 | 1.839873957 | 3.399316225 |
19 | 0.05 | 2.45 | 3.399316225 | 1.838337624 | 3.491233107 | 1.885958617 | 3.492423631 |
20 | 0.05 | 2.5 | y(2) = 3.492423631 |
Runge-Kutta | ||||||||
i | h | x_i | y_i | k1 = f(x_i,y_i) | k2 = f(x_i+.5h,y_i+.5hk1) | k3 = f(x_i+.5h, y_i+.5hk2) | k4 = f(x+h,y+hk3) | Runge-Kutta y_(i+1) = y_i + h*(k1+2k2+2k3+k4)/6 |
0 | 0.05 | 1.5 | 2.2 | 0.6 | 0.6366875 | 0.6359881445 | 0.6728554594 | 2.23181839 |
1 | 0.05 | 1.55 | 2.23181839 | 0.6728407481 | 0.709821466 | 0.7090934081 | 0.746181552 | 2.267292157 |
2 | 0.05 | 1.6 | 2.267292157 | 0.7461662747 | 0.7832936203 | 0.7825394711 | 0.8197042176 | 2.306438296 |
3 | 0.05 | 1.65 | 2.306438296 | 0.8196884061 | 0.8568207014 | 0.856043244 | 0.8931456109 | 2.349259645 |
4 | 0.05 | 1.7 | 2.349259645 | 0.8931293019 | 0.9301304558 | 0.9293326184 | 0.9662395087 | 2.395745436 |
5 | 0.05 | 1.75 | 2.395745436 | 0.9662227434 | 1.002962858 | 1.002147687 | 1.038732462 | 2.445871905 |
6 | 0.05 | 1.8 | 2.445871905 | 1.038715285 | 1.075071194 | 1.074241825 | 1.110384803 | 2.499602956 |
7 | 0.05 | 1.85 | 2.499602956 | 1.110367265 | 1.146222996 | 1.145382627 | 1.180971517 | 2.556890873 |
8 | 0.05 | 1.9 | 2.556890873 | 1.18095367 | 1.216200837 | 1.215352702 | 1.250282954 | 2.617677071 |
9 | 0.05 | 1.95 | 2.617677071 | 1.250264856 | 1.284802979 | 1.283950319 | 1.318125413 | 2.681892878 |
10 | 0.05 | 2 | 2.681892878 | 1.318107122 | 1.351843875 | 1.350989913 | 1.384321567 | 2.749460347 |
11 | 0.05 | 2.05 | 2.749460347 | 1.384303145 | 1.417154527 | 1.416302445 | 1.448710757 | 2.820293079 |
12 | 0.05 | 2.1 | 2.820293079 | 1.448692267 | 1.480582715 | 1.479735625 | 1.51114915 | 2.894297063 |
13 | 0.05 | 2.15 | 2.894297063 | 1.511130657 | 1.541993079 | 1.541154007 | 1.57150976 | 2.971371518 |
14 | 0.05 | 2.2 | 2.971371518 | 1.57149133 | 1.601267084 | 1.600438946 | 1.629682352 | 3.051409732 |
15 | 0.05 | 2.25 | 3.051409732 | 1.629664051 | 1.658302858 | 1.657488442 | 1.685573222 | 3.134299898 |
16 | 0.05 | 2.3 | 3.134299898 | 1.685555117 | 1.713014923 | 1.712216872 | 1.739104879 | 3.219925928 |
17 | 0.05 | 2.35 | 3.219925928 | 1.739087035 | 1.765333814 | 1.764554613 | 1.79021561 | 3.308168257 |
18 | 0.05 | 2.4 | 3.308168257 | 1.790198091 | 1.815205609 | 1.814447568 | 1.838858971 | 3.398904619 |
19 | 0.05 | 2.45 | 3.398904619 | 1.838841842 | 1.862591365 | 1.861856614 | 1.885003188 | 3.492010794 |
20 | 0.05 | 2.5 | y(2.5) = 3.492010794 |
Leave a Reply