Due Monday, September 11, 11:59pm
What is $\LaTeX$?
Throughout the semester, you’ll be asked to submit complete written solutions in your own posts on the OpenLab. One way to do this is to upload a photo of work you wrote on paper and upload it as a picture to include in your post. You could also just type the work directly into your post. The regular keyboard can do a lot, but it won’t look that great and you’ll be missing useful math characters like $\int$ and $\frac{d}{dx}$.
Instead, you can use the most commonly used math typesetting language, called $\LaTeX$ (pronounced LAY-teck) right in your OpenLab posts. $\LaTeX$ is a software system/markup language for typesetting math. It’s used widely to prepare research papers, technical reports, and other documents requiring mathematical symbols. A lot of you are planning on going into technical fields, and might find getting to know how to typeset math in $\LaTeX$ to be useful. It takes a while to learn, but it’s waaaaaay better than Microsoft Word’s equation editor!
Our OpenLab page has a $\LaTeX$ plugin installed, so that’s why I can type beautiful things that look like this:
$u= \int \frac{3-6t}{e^{-t}}dt$
$\quad=\int \left(3e^t – 6te^t\right) dt$
$\quad=3e^t – 6(te^t-e^t)+C$
$\quad=9e^t -6te^t+C.$
Instructions
For this assignment all you’re going to do is practice typing some $\LaTeX$ code in the comments on this post. Submit a comment using $\LaTeX$ on this post.
What you type doesn’t have to make any mathematical sense, just try to get it to compile some math symbols. Go ahead and play around and make a giant mess in these comments. If something doesn’t work at first, don’t worry just try again.
Instructions for typing in $\LaTeX$ on the OpenLab can be found here.
Two things to remember:
- Type ! at the top of your post/comment.
- Enclose your mathematical expression in dollar signs. (The instructions linked above use \ begin{math} and \ end{math} (without the spaces) instead of dollar signs, but you can use either to enclose your expression.)
[latexpage]
$\sum_{i=0}^{\infty} i^2$
$\int_0^{10} x^2 dx$
$\frac{\sqrt[3]{x}}{\cos(x^2)}$
\begin{equation}
\frac{d\heartsuit}{dt} > 0,
\frac{d^2\heartsuit}{dt^2} > 0,
\forall t > 0.
\end{equation}
$\frac{d\heartsuit}{dt} > 0,
\frac{d^2\heartsuit}{dt^2} > 0,
\forall t > 0.$
$\frac{d\heartsuit}{dt} > 0,$
$\frac{d\heartsuit}{dt} > 0,$
$\frac{d^2\heartsuit}{dt^2} > 0,$
$\forall t > 0.$
$\frac{\delta}{\delta x}[\frac{U(x)}{V(x)}] = \frac{U'(x)V(x) – U(x)V'(x)}{[V(x)]^2}$
$\lim_{x\to\infty} 3x^3+5x^2$
$e^{i/pi}+1=0$
$e^{\pi}+1$
$\lim_{n\to\infty}
$\lim_{n\to\infty}$
$\int\sec^2{(8x)}dx=\frac{1}{8}\tan(8x)+C$
\begin{math} \frac{x+10}{x^8 + 6x} \end{math}
$\sqrt[25]{11}$
\begin{math} \sqrt{2x+34} \end{math} + \begin{math} x^{85y} \end{math}
\begin{math} \sqrt{2x+76} \end{math}
\begin{math} \sqrt[5]{78xy} \end{math}
$\sqrt{x+2}$
$/sqrt{x+56}$ + $x^43$
$\sqrt{x+56}$ + $x^4$
\ begin{math}lint_1 linfty\!\frac{1}{x^2}\,dx=\left[-\frac{1}{x}\right]_11\infty-1\ end{math}
\begin{math} \sqrt{x+1} \end{math}
\begin{math} \sqrt{x=4} \end{math}
\begin{math} \sqrt{x+2} \end{math}
\ begin{math} sqrt{x}\end{math}
!
$ sqrt{x}$
!
\sqrt{x}
$
!
$\sqrt{x}$
\begin{math} \frac{x^16+x}{x^2 + 6x} + x \end{math}
\begin{math} \frac{2x^5+8}{x + 5x^17} \end{math}
!
\begin{math} \frac{x^2+17}{x + 14y^5} \end{math}
$\lim_{x\to\infty}$
$\frac{y^2-6}{y+3}$
.
\begin{math} x^{10y}\end{math}
\begin{math} \sqrt{5x+6x^2} \end{math}
!
$\begin{math} \sqrt{5x+2} \end{math}$
!
\begin{math}\sqrt[10]{59xy}\end{math}
!
\begin{math}x^{5y}\end{math}$
!
\begin{math}x^{78y}\end{math}$
!
$\begin{math}\sqrt[6]{22xy}\end{math}$
!
$\sqrt[7]{52xy}$
$\sqrt[4]{2x+7}$
!
\begin{math} \sqrt[4]{256x+16} \end{math}
!
$begin{math} \sqrt[4]{256x+16y} $end{math}
\begin{math} \c^2=a^2+b^2 \end{math} therefore \begin{math} \c=sqrt{a}+sqrt{b} \end{math}
$\c^2=a^2+b^2}$
$\c^2=a^2+b^2$
!
\sqrt{x-2}
$
/ sqrtx + 2
!
\begin{math} \sqrt[42]{28y} \end{math}
!\begin{math} \sqrt[28]{42xyz} \end{math}
\begin{math} \sqrt[42]{89y} \end{math}
! $\frac{2x+7}{x^2-\frac{x}{42}}$
!
$\frac {\sqrt{666666}}{x y^54321}$
!
$\frac {\sqrt{666666}}{x y^(54321)}$