Professor Kate Poirier | D071 | Fall 2023

OpenLab assignment: typing math in LaTeX

Due Monday, September 11, 11:59pm

What is $\LaTeX$?

Throughout the semester, you’ll be asked to submit complete written solutions in your own posts on the OpenLab. One way to do this is to upload a photo of work you wrote on paper and upload it as a picture to include in your post. You could also just type the work directly into your post. The regular keyboard can do a lot, but it won’t look that great and you’ll be missing useful math characters like $\int$ and $\frac{d}{dx}$.

Instead, you can use the most commonly used math typesetting language, called $\LaTeX$ (pronounced LAY-teck) right in your OpenLab posts. $\LaTeX$ is a software system/markup language for typesetting math. It’s used widely to prepare research papers, technical reports, and other documents requiring mathematical symbols. A lot of you are planning on going into technical fields, and might find getting to know how to typeset math in $\LaTeX$ to be useful. It takes a while to learn, but it’s waaaaaay better than Microsoft Word’s equation editor!

Our OpenLab page has a $\LaTeX$ plugin installed, so that’s why I can type beautiful things that look like this:

$u= \int \frac{3-6t}{e^{-t}}dt$
$\quad=\int \left(3e^t – 6te^t\right) dt$
$\quad=3e^t – 6(te^t-e^t)+C$

$\quad=9e^t -6te^t+C.$

Instructions

For this assignment all you’re going to do is practice typing some $\LaTeX$ code in the comments on this post. Submit a comment using $\LaTeX$ on this post.

What you type doesn’t have to make any mathematical sense, just try to get it to compile some math symbols. Go ahead and play around and make a giant mess in these comments. If something doesn’t work at first, don’t worry just try again. 

Instructions for typing in $\LaTeX$ on the OpenLab can be found here.

Two things to remember:

  1. Type ! at the top of your post/comment.
  2. Enclose your mathematical expression in dollar signs. (The instructions linked above use \ begin{math} and \ end{math} (without the spaces) instead of dollar signs, but you can use either to enclose your expression.)

57 Comments

  1. Kate Poirier

    [latexpage]

    $\sum_{i=0}^{\infty} i^2$

  2. Kate Poirier

    $\frac{\sqrt[3]{x}}{\cos(x^2)}$

  3. Qing Chen(Charlotte)

    \begin{equation}

    \frac{d\heartsuit}{dt} > 0,

    \frac{d^2\heartsuit}{dt^2} > 0,

    \forall t > 0.

    \end{equation}

  4. Qing Chen(Charlotte)

    $\frac{d\heartsuit}{dt} > 0,

    \frac{d^2\heartsuit}{dt^2} > 0,

    \forall t > 0.$

  5. Qing Chen(Charlotte)

    $\frac{d\heartsuit}{dt} > 0,$

  6. Qing Chen(Charlotte)

    $\frac{d\heartsuit}{dt} > 0,$

    $\frac{d^2\heartsuit}{dt^2} > 0,$

    $\forall t > 0.$

  7. Ethan Lo

    $\frac{\delta}{\delta x}[\frac{U(x)}{V(x)}] = \frac{U'(x)V(x) – U(x)V'(x)}{[V(x)]^2}$

  8. Jonathan Lee

    $\lim_{x\to\infty} 3x^3+5x^2$

  9. Brandon Payne

    $e^{i/pi}+1=0$

  10. Brandon Payne

    $e^{\pi}+1$

  11. Brandon Payne

    $\lim_{n\to\infty}

  12. Brandon Payne

    $\lim_{n\to\infty}$

  13. Allan Yunayev

    $\int\sec^2{(8x)}dx=\frac{1}{8}\tan(8x)+C$

  14. Tamika

    \begin{math} \frac{x+10}{x^8 + 6x} \end{math}

  15. Tamika

    $\sqrt[25]{11}$

  16. Hosea Lopez

    \begin{math} \sqrt{2x+34} \end{math} + \begin{math} x^{85y} \end{math}

  17. Hosea Lopez

    \begin{math} \sqrt{2x+76} \end{math}

  18. Hosea Lopez

    \begin{math} \sqrt[5]{78xy} \end{math}

  19. Hosea Lopez

    $\sqrt{x+2}$

  20. Hosea Lopez

    $/sqrt{x+56}$ + $x^43$

  21. Hosea Lopez

    $\sqrt{x+56}$ + $x^4$

  22. Joanna Q.

    \ begin{math}lint_1 linfty\!\frac{1}{x^2}\,dx=\left[-\frac{1}{x}\right]_11\infty-1\ end{math} 

  23. Joanna Q.

    \begin{math} \sqrt{x+1} \end{math}

    \begin{math} \sqrt{x=4} \end{math}

  24. Joanna Q.

    \begin{math} \sqrt{x+2} \end{math}

  25. Joanna Q.

    \ begin{math} sqrt{x}\end{math} 

  26. Joanna Q.

    !

    $ sqrt{x}$

  27. Joanna Q.

    !

    \sqrt{x}

    $

  28. Joanna Q.

    !

    $\sqrt{x}$

  29. Angelica Tellez

    \begin{math} \frac{x^16+x}{x^2 + 6x} + x \end{math}

  30. Angelica Tellez

    \begin{math} \frac{2x^5+8}{x + 5x^17} \end{math}

  31. Angelica Tellez

    !

    \begin{math} \frac{x^2+17}{x + 14y^5} \end{math}

  32. Angelica Tellez

    $\lim_{x\to\infty}$

  33. Emily Murphy

    $\frac{y^2-6}{y+3}$

  34. Shawn Suraj

    .

  35. Shawn Suraj

    \begin{math} x^{10y}\end{math}

  36. Shawn Suraj

    \begin{math} \sqrt{5x+6x^2} \end{math}

  37. Shawn Suraj

    !

    $\begin{math} \sqrt{5x+2} \end{math}$

  38. Shawn Suraj

    !

    \begin{math}\sqrt[10]{59xy}\end{math}

  39. Shawn Suraj

    !

    \begin{math}x^{5y}\end{math}$

  40. Shawn Suraj

    !

    \begin{math}x^{78y}\end{math}$

  41. Shawn Suraj

    !

    $\begin{math}\sqrt[6]{22xy}\end{math}$

  42. Shawn Suraj

    !

    $\sqrt[7]{52xy}$

  43. Shawn Suraj

    $\sqrt[4]{2x+7}$

  44. Benjamin Tolbert

    !

    \begin{math} \sqrt[4]{256x+16} \end{math}

  45. Benjamin Tolbert

    !

    $begin{math} \sqrt[4]{256x+16y} $end{math}

  46. Wellington D Verduga

    \begin{math} \c^2=a^2+b^2 \end{math} therefore \begin{math} \c=sqrt{a}+sqrt{b} \end{math}

  47. Wellington D Verduga

    $\c^2=a^2+b^2}$

  48. Wellington D Verduga

    $\c^2=a^2+b^2$

  49. Erick Hidalgo

    !

    \sqrt{x-2}

    $

  50. Erick Hidalgo

    / sqrtx + 2

  51. Phoebe Narcisse

    !

    \begin{math} \sqrt[42]{28y} \end{math}

  52. Phoebe Narcisse

    !\begin{math} \sqrt[28]{42xyz} \end{math}

  53. Phoebe Narcisse

    \begin{math} \sqrt[42]{89y} \end{math}

  54. Phoebe Narcisse

    ! $\frac{2x+7}{x^2-\frac{x}{42}}$

  55. Kunal Surujprasad

    !

    $\frac {\sqrt{666666}}{x y^54321}$

  56. Kunal Surujprasad

    !

    $\frac {\sqrt{666666}}{x y^(54321)}$

Leave a Reply

Your email address will not be published. Required fields are marked *