Faculty: You can include your course schedule here by starting with this template and adding in dates for each session, or making other changes as desired. To edit the data in the schedule, follow the “Edit” link that appears at the very end of the table (only you, the course admin, have access). Please delete this informational block when you are ready to share your site with your students. For help working with OpenLab Course sites, visit OpenLab Help.
Session | Date | Topic | WeBWorK | Homework |
---|---|---|---|---|
1 | 4.10 Antiderivatives (p. 485 – 496) [Volume 1] | P. 497: 465, 470, 471, 476, 477, 481, 484, 490, 492, 493, 495, 496, 499, 500, 501 |
||
2 | 1.2 The Definite Integral (p. 27 – 39) 1.3 The Fundamental Theorem of Calculus (p. 50 – 57) | P. 42: 71, 73, 75, 76, 77, 80, 88, 89, 90, 92 P. 60: 170, 171, 172, 182, 183, 184, 187 |
||
3 | 1.5 Substitution (p. 82 – 89) 1.6 Integrals Involving Exponential and Logarithmic Functions (p. 94 – 96, 98 - 102) | P. 90: 256, 258, 261, 265, 271, 273, 275, 276, 292, 293 P. 103: 320, 321, 322, 325, 327, 328, 330, 332, 335, 337, 338, 355 – 363 all |
||
4 | 3.1 Integration by Parts (p. 261 – 268) | P. 270: 7, 8, 13, 15, 16, 19, 20, 27, 31, 38, 42, 43, 45 | ||
5 | 3.2 Trigonometric Integrals (p. 273 – 282) | P. 283: 73, 74, 78 – 85 all, 91, 97, 98, 100 | ||
6 | 3.3 Trigonometric Substitution (p. 285 – 293) | P. 296: 126, 128, 135 – 143 odd, 147 – 153 odd | ||
7 | 3.3 Trigonometric Substitution (continued) [cover problems #132 on p. 196 and #164 on p. 297] | P. 296: 131, 133, 134, 160 – 163 all, 164 | ||
8 | First Examination | |||
9 | 3.4 Partial Fraction Decomposition (p. 298 – 303) | P. 308: 183, 185, 187, 196, 197, 199, 200 – 204 all | ||
10 | 3.4 Partial Fraction Decomposition (cont.) (p. 303 – 306) | P. 308: 189, 198, 205, 206, 207, 209 – 212 all, 215, 217 | ||
11 | 3.7 Improper Integration (p. 330 – 340) | P. 343: 347 – 373 odd | ||
12 | 6.3 Taylor and Maclaurin Polynomials (p.562--567) | P. 578: 118—123 all | ||
13 | 6.3 Taylor and Maclaurin Polynomials (continued) (p.567--573) | P. 578: 125, 127, 28, 133, 135 | ||
14 | Midterm Examination | |||
15 | 5.1 Sequences (p.427--444) | P. 447: 1, 3, 7, 9, 12, 13--15 odd, 23--37 odd, 47--51 odd | ||
16 | 5.2 Infinite Series (p.450--459) | P. 466: 67--74, 76, 77, 79, 80, 83--85 odd, 89—95 odd | ||
17 | 5.3 The Divergence and Integral Tests (p.471--478) | P. 482: 138, 139--145 odd, 152—155, 158, 159, 161, 163 | ||
18 | 5.4 Comparison Tests (p.485--492) | P. 493: 194—197all, 199, 200, 202, 204—206 all, 211 (optional: 222-223) |
||
19 | 5.5 Alternating Series (p.496--502) | P. 505: 250--257 all, 261—264 all, 266, 267 | ||
20 | 5.6 Ratio and Root Tests (p.509--519) | P. 522: 317--320 all, 323, 325, 328, 329--335 odd, 349, 351 | ||
21 | 6.1 Power Series and Functions (p.531--537) 6.2 Properties of Power Series (p.544--548, 552--557) | P. 541: 13-21 odd, 24, 28 P. 558: 87—90 all, 96, 97 |
||
22 | 6.3 Taylor and Maclaurin Series (p.561--562, 573--576) 6.4 Working with Taylor Series (p.584--587, 590--592) | P. 578: 118-123 all, 140—147 all, 151—155 all P. 596: 203, 206, 207, 209, 219--223 odd |
||
23 | Third Examination | |||
24 | 1.1 Approximating Areas (p. 5 – 20) | P. 21: 1 – 7 odd, 12, 15, 16, 17 | ||
25 | 2.1 Areas Between Two Curves (p. 122 – 128) | P. 131: 1 – 7 all, 11, 15 – 21 all, 23 P. 271: 63 |
||
26 | 2.2 Determining Volumes by Slicing (p. 141 – 149) | P. 150: 58, 59, 74 – 80 all, 98 – 102 all Find the volume of the solid obtained by rotating the region bounded by the curves y = x2, y = 12-x, x = 0 and x ≥ 0 about (a) the x–axis; (b) the line y = -2; (c) the line y = 15; (d) the y-axis; (e) the line x = -5; (f) the line x = 7. |
||
27 | 2.3 Volumes of Revolution: Cylindrical Shells (p. 156 – 165) | P. 166: 120 – 131 all, 140-143 all, 145, 148, 158, 159 P. 271: 61 |
||
28 | 2.4 Arc Length of a Curve and Surface Area (p. 169 – 179) | P. 180: 165, 166, 171, 173, 174, 176, 177, 191, 192 P. 284: 119 |
||
29 | Review | |||
30 | Final Examination |
Recent Comments