Trigonometric Identities

Basic Identities

  • tanθ=sinθcosθcotθ=1tanθ=cosθsinθ
  • secθ=1cosθcscθ=1sinθ
  • sin2θ+cos2θ=1
  • sec2θ=1+tan2θ

Double angle identities (use these to reduce the power of sine or cosine)

  • sin2x=1cos(2x)2
  • cos2x=1+cos(2x)2

Derivatives and Integrals of Trig Functions

Derivatives of Trig Functions

  • ddx(sinx)=cosx
  • ddx(cosx)=sinx
  • ddx(tanx)=sec2x
  • ddx(cotx)=csc2x
  • ddx(secx)=secxtanx
  • ddx(cscx)=cscxcotx

Integrals of Trig Functions

  • cosxdx=sinx+C
  • sinxdx=cosx+C
  • sec2xdx=tanx+C
  • secxtanxdx=secx+C
  • tanxdx=ln|secx|+C
  • secxdx=ln|secx+tanx|+C

Example: cos3xsinxdx