# Calendar

This calendar lists topics for each day of the course. It is subject to change (if changes are made, notifications will be made on the OpenLab). The assigned problems in the book are for additional practice only — they will not be collected or graded.

 Day Date Topic Homework problems in book (for additional practice only) 1 Monday, 6/3/2013 1.1 An Overview of Statistics pages 2-5, Examples 1 – 3 1.2 Data Classification page 9, Example 1 1.3 Data Collection and Experimental Design pages 16 – 22, Examples 1, 3 and 4 P. 6: 1 ā 41 odd P. 13: 7 ā 17 odd P. 23: 11 ā 15 odd, 19 ā 29 odd 2.1 Frequency Distributions and Their Graphs pages 38 – 46, Examples 1 -6 P. 47: 1 ā 31 odd, 35, 39, 41 Ā Ā 2.2 More Graphs and Displays pages 53 – 57, Examples 1, 2, and 4 P. 60: 5, 9, 13, 15 ā 19 odd, 23, 35, 37 2 Tuesday, 6/4/2013 2.3 Measures of Central Tendency pages 65 ā 68 and 71, Examples 1 – 6 P. 72: 1 ā 11 odd, 17 ā 21 odd, 25 ā 29 odd 2.4 Measures of Variation pages 80 – 83, Examples 1 – 4 (Use the formulas Ļ^2 =(Nāx^2 ā(āx)^2)/N^2 and s^2=(nāx^2 ā(āx)^2)/n(n-1) when calculating the variance for examples done in class) P. 90: 1, 3, 7, 11, 13, 19, 25, 27 Ā Ā 2.5 Measures of Position pages 100 – 106, Examples 1, 3 – 7 P. 107: 1 -21 odd, 25 – 35 odd, 39 ā 45 odd 3 Thursday, 6/6/2013 3.1 Basic Concepts of Probability and Counting pages 128 – 137, Examples 1 – 11 P. 138: 1, 3, 15 – 25 odd, 28, 29, 33 ā 41 odd, 45, 55 ā 61 odd 3.2 Conditional Probability and the Multiplication Rule pages 145 – 149, Examples 1 – 5 P. 150: 7 – 19 odd, 23 ā 31 odd 4 Monday, 6/10/2013 3.3 The Addition Rule pages 156 – 160, Examples 1 – 5 P. 161: 1 ā 25 odd 3.4 Additional Topics in Probability and Counting pages 168 – 173, Examples 1 – 9 P. 174: 7, 11 ā 31 odd, 37, 43 ā 47 odd 5 Tuesday, 6/11/2013 4.1 Probability Distributions pages 190 – 193, Examples 1, 3 and 4 P. 197: 1 ā 7 odd, 13 ā 19 odd, 21 ā 25 odd, 27 ā 31 odd do part (a), 41 First Examination – through Sec 3.2 (includes conditional probability but not independence) 6 Thursday, 6/13/2013 4.1 Probability Distributions pages 194 – 196, Examples 5 ā 7 (Use the formula Ļ^2 =āx^2P(x) – Ī¼^2 ) P. 198: 27 ā 31 odd do parts (c) and (d), 35, 37, 43 4.2 Binomial Distributions pages 202 – 208, Examples 1 ā 3, 5, 6, 8 P. 211: 9 ā 25 odd, 27 ā 30 all do parts (a), (c) and (d), 33 7 Monday, 6/17/2013 5.1 Introduction to Normal Distributions and the Standard Normal Distribution pages 236 – 243, Examples 1 ā 6 P. 244: 9 – 15 odd, 19 ā 37 odd, 41, 43 5.2 Normal Distributions: Finding Probabilities pages 249 – 250, Examples 1 – 2 P. 252: 1 – 23 odd 8 Tuesday, 6/18/2013 5.3 Normal Distributions: Finding Values pages 257 – 261, Examples 1 – 5 P. 262: 1 – 37 odd Second Examination – through Sec 4.2 9 Thursday, 6/20/2013 5.5 Normal Approximations to Binomial Distributions pages 281 – 286, Examples 1 – 5 P. 287: 1 – 25 odd 10 Monday, 6/24/2013 5.4 Sampling Distributions and the Central Limit Theorem pages 266 – 273, Examples 1 – 6 P. 274: 11 ā 35 odd 7.1: Introduction to Hypothesis Testing pages 356 – 366, Examples 1 ā 3, 5 P. 367: 11 ā 25 odd, 28, 32, 38, 41, 43 11 Tuesday, 6/25/2013 7.2 Hypothesis Testing for the Mean (Large Samples) pages 376 – 380, Examples 7 – 10 P. 382: 17 ā 27 odd, 35 ā 39 all, 41 7.3 Hypothesis Testing for the Mean (Small Samples) pages 387 – 391, Examples 1 – 5 P. 393: 3 ā 23 odd, 35 12 Thursday, 6/27/2013 10.1 Goodness-of-Fit Test pages 540 – 545, Examples 1 – 3 P. 546: 1 – 15 odd, Third Examination – through Sec 5.4 13 Monday, 7/1/2013 9.1 Correlation pages 484 – 488, Examples 1 and 4 P. 495: 1, 3, 9 ā 13 odd, 21 ā 27 odd do parts (b) and (c) 9.2 Linear Regression pages 501 – 502, Example 1 P. 505: 3, 5, 7 ā 12 all, 17 – 23 odd 14 Tuesday, 7/2/2013 10.2 Independence pages 551 – 555, Examples 1 – 2 P. 557: 1 ā 17 odd Review Thursday, 7/4/2013 NO CLASSES – 4TH OF JULY HOLIDAY 15 Friday, 7/5/2013 Final Examination