Calendar

This calendar lists topics for each day of the course. It is subject to change (if changes are made, notifications will be made on the OpenLab). The assigned problems in the book are for additional practice only — they will not be collected or graded.

 Day Date Topic Homework problems in book (for additional practice only) 1 1/29/2013 1.1 An Overview of Statistics pages 2-5, Examples 1 – 3 1.2 Data Classification page 9, Example 1 1.3 Data Collection and Experimental Design pages 16 – 22, Examples 1, 3 and 4 P. 6: 1 ā 41 odd P. 13: 7 ā 17 odd P. 23: 11 ā 15 odd, 19 ā 29 odd 2 1/31/2013 2.1 Frequency Distributions and Their Graphs pages 38 – 46, Examples 1 -6 P. 47: 1 ā 31 odd, 35, 39, 41 3 2/5/2013 2.2 More Graphs and Displays pages 53 – 57, Examples 1, 2, and 4 P. 60: 5, 9, 13, 15 ā 19 odd, 23, 35, 37 4 2/7/2013 2.3 Measures of Central Tendency pages 65 ā 68 and 71, Examples 1 – 6 P. 72: 1 ā 11 odd, 17 ā 21 odd, 25 ā 29 odd 2/12/2013 COLLEGE CLOSED (Lincoln’s Birthday) 5 2/14/2013 (Tuesday Schedule) 2.4 Measures of Variation pages 80 – 83, Examples 1 – 4 (Use the formulas Ļ^2 =(Nāx^2 ā(āx)^2)/N^2 and s^2=(nāx^2 ā(āx)^2)/n(n-1) when calculating the variance for examples done in class) P. 90: 1, 3, 7, 11, 13, 19, 25, 27 6 2/19/2013 2.5 Measures of Position pages 100 – 106, Examples 1, 3 – 7 P. 107: 1 -21 odd, 25 – 35 odd, 39 ā 45 odd 7 2/21/2013 3.1 Basic Concepts of Probability and Counting pages 128 – 137, Examples 1 – 11 P. 138: 1, 3, 15 – 25 odd, 28, 29, 33 ā 41 odd, 45, 55 ā 61 odd 8 2/26/2013 First Examination 9 2/28/2013 3.2 Conditional Probability and the Multiplication Rule pages 145 – 149, Examples 1 – 5 P. 150: 7 – 19 odd, 23 ā 31 odd 10 3/5/2013 3.3 The Addition Rule pages 156 – 160, Examples 1 – 5 P. 161: 1 ā 25 odd 11 3/7/2013 3.4 Additional Topics in Probability and Counting pages 168 – 173, Examples 1 – 9 P. 174: 7, 11 ā 31 odd, 37, 43 ā 47 odd 12 3/12/2013 4.1 Probability Distributions pages 190 – 193, Examples 1, 3 and 4 P. 197: 1 ā 7 odd, 13 ā 19 odd, 21 ā 25 odd, 27 ā 31 odd do part (a), 41 13 3/14/2013 4.1 Probability Distributions pages 194 – 196, Examples 5 ā 7 (Use the formula Ļ^2 =āx^2P(x) – Ī¼^2 ) P. 198: 27 ā 31 odd do parts (c) and (d), 35, 37, 43 14 3/19/2013 4.2 Binomial Distributions pages 202 – 208, Examples 1 ā 3, 5, 6, 8 P. 211: 9 ā 25 odd, 27 ā 30 all do parts (a), (c) and (d), 33 15 3/21/2013 Second Examination 3/26/2013 SPRING BREAK 3/25 – 4/2 3/28/2013 SPRING BREAK 3/25 – 4/2 4/2/2013 SPRING BREAK 3/25 – 4/2 16 4/4/2013 5.1 Introduction to Normal Distributions and the Standard Normal Distribution pages 236 – 243, Examples 1 ā 6 P. 244: 9 – 15 odd, 19 ā 37 odd, 41, 43 17 4/9/2013 5.2 Normal Distributions: Finding Probabilities pages 249 – 250, Examples 1 – 2 P. 252: 1 – 23 odd 18 4/11/2013 5.3 Normal Distributions: Finding Values pages 257 – 261, Examples 1 – 5 P. 262: 1 – 37 odd 19 4/16/2013 5.5 Normal Approximations to Binomial Distributions pages 281 – 286, Examples 1 – 5 P. 287: 1 – 25 odd 20 4/18/2013 5.4 Sampling Distributions and the Central Limit Theorem pages 266 – 273, Examples 1 – 6 P. 274: 11 ā 35 odd 21 4/23/2013 Third Examination 22 4/25/2013 7.1: Introduction to Hypothesis Testing pages 356 – 366, Examples 1 ā 3, 5 P. 367: 11 ā 25 odd, 28, 32, 38, 41, 43 23 4/30/2013 7.2 Hypothesis Testing for the Mean (Large Samples) pages 376 – 380, Examples 7 – 10 P. 382: 17 ā 27 odd, 35 ā 39 all, 41 24 5/2/2013 7.3 Hypothesis Testing for the Mean (Small Samples) pages 387 – 391, Examples 1 – 5 P. 393: 3 ā 23 odd, 35 25 5/7/2013 9.1 Correlation pages 484 – 488, Examples 1 and 4 P. 495: 1, 3, 9 ā 13 odd, 21 ā 27 odd do parts (b) and (c) 26 5/9/2013 9.2 Linear Regression pages 501 – 502, Example 1 P. 505: 3, 5, 7 ā 12 all, 17 – 23 odd 27 5/14/2013 10.1 Goodness-of-Fit Test pages 540 – 545, Examples 1 – 3 P. 546: 1 – 15 odd, 28 5/16/2013 10.2 Independence pages 551 – 555, Examples 1 – 2 P. 557: 1 ā 17 odd 29 5/21/2013 Review 30 5/23/2013 Final Examination