- $\rhd$ Monomials (5:55) This video uses function notation and analyzes the expressions as functions.
[Example 1] $\dfrac{6x^3}{5} \cdot \dfrac{2}{3x}$
[Example 2] $\dfrac{2x^4}{7} \div \dfrac{5x^4}{4}$
2. $ \star$ Multiply and divide rational expressions Multiply the following monomials and determined if the result is defined when $b = 0$. $ \dfrac{-5b^3}{6} \cdot \dfrac{3b^2}{-10}$ .
3. $\rhd$ Multiply rational expressions (4:51) Multiply $\dfrac{a^2 – 4}{a^2 – 1} \cdot \dfrac{a +1}{a +2}$ noting that $a \neq -2$ and $a \neq -1$.
4. $\rhd$ Dividing rational expressions (4:09) Divide $\dfrac{2p+6}{p+5} \div \dfrac{10}{4p+20}$ where $p \neq -5$.
5. $\star$ Multiplying rational expression practice $\dfrac{4z^2 +24z}{3z^2 – 9z -12} \cdot \dfrac{z^2 – 4z -5}{z-4}$
6. $\rhd$ Mulitply and expressing as a simplified rational expression (3:37) Multiply $\dfrac{3x^2y}{2ab}\cdot\dfrac{14a^2b}{18xy^2}$ where $a, b, x, y \neq 0$.
7. $\star$ Divide the rational expressions and simplify $\dfrac{10n^2 + 23n – 5}{4n^2 + 6n} \div \dfrac{25n^2 – 10n +1}{7n+3}$