Syllabus

Lec. Topic Reading (Whitman) Reading (OpenStax)
1 Points in space

Coordinate systems

12.1  12.6 2.7
2 Vectors in $\mathbb R^3$

Dot product

Cross product

12.2  12.3  12.4 2.1  2.2  2.3  2.4
3 Lines and planes in Space 12.5 2.5
4 Vector valued functions and space curves

Tangent vectors of curves

13.1  13.2  13.3 3.1  3.2  3.3
5 Multivariable functions

Quadric surfaces

14.1  14.2 4.1  2.6
6 Partial derivatives

Tangent planes

14.3  14.6 4.3  4.4
7 Chain rule 14.4 4.5
8 Test 1
9 Directional derivatives

Gradient

14.5 4.6
10 Maximum-Minimum problems 14.7 4.7
11 Lagrange multipliers 14. 8 4.8
12 Volume under the graph of a surface 15.1 5.1
13 Double and iterated integrals 15.1 5.2
14 Double integrals in polar coordinates 15.2 5.3
15 Review
16 Test 2
17 Triple integrals 15.5 5.4
18 Double integrals in spherical and cylindrical coordinates 15.6 5.5
19 Change of variables formula 15.7 5.7
20 Vector fields

Line integrals

16.1  16.2 6.1  6.2
21 Conservative vector fields 16.3 6.3
22 Green’s Theorem 16.4 6.4
23 Divergence and curl 16.5 6.5
24 Test 3
25 Vector functions on surfaces

Surface integrals

Surface area

16.6  16.7  15.4 6.6
26 Stokes’ Theorem 16.8 6.7
27 Stokes’ Theorem, continued

Gauss’ Theorem

16.8  16.9 6.7  6.8
28 Gauss’ Theorem, continued 16.9 6.8
29 Review
30 Final