- $\rhd$ Exponents (basic properties) (12:26) An overview of the basic properties with several examples.
- $\rhd$ Exponents (3:29) Simplify $3^4$, $2^6$, $(-1)^7$.
- $\rhd$ Evaluating expressions (numbers only) (2:18) Evaluate $2+(1-5)^2+3^2$, $7-(4-2)^3+(-2)^3$.
- $\rhd$ Evaluating expressions (numbers only) (3:58) Evaluate $-4[2(4)^2-5^2]^2$, $7[2\cdot 3^3-8^2]^2$.
- $\rhd$ Evaluating expressions (numbers and variables) (6:02) Evaluate $(2x^3y^4)(3xy^5)^2$, $(x^5y^9)(-5x^2y^2)^4$.
- Evaluating expressions (numbers and variables) (3:02) Evaluate $\left(\displaystyle\frac{x^2}{2}\right)^4$, $ \left(\displaystyle\frac{4}{n^6}\right)^2$.
- Evaluating expressions (numbers and variables) (8:47) Evaluate $\displaystyle\frac{(3x^2y^4)^5}{(3x^3y^7)^3}$, $ \displaystyle\frac{(5xy^2)^4}{(5x^2y)^6}$.
- $\rhd$ Negative exponents and fractional exponents (10:13) Basic definitions followed by several examples.
- $\rhd$ Evaluating expressions with negative exponents (6:07) Evaluate $\displaystyle\frac{t^2u^3v^5}{t^4u^2v^8}$, $ \displaystyle\frac{5a^7b^5}{25a^9b^3}$.