- $\rhd$ Definite integral (4:51) Defining $\displaystyle\int_a^bf(x)dx$ using Riemann sum.
- $\rhd$ Definite integral (2:28) Definite integrals represent the area between the curve of a function $y=f(x)$ and the $x$-axis.
- $\rhd$ Rewriting the limit of a Riemann sum as a definite integral (6:34) Write $\displaystyle\lim_{n\to\infty}\sum_{i=1}^n\ln\left(2+\dfrac{5i}{n}\right)$ as a definite integral. (Optional)
- $\rhd$ Finding definite integrals using properties (2:08) Evaluate $\displaystyle\int_3^3 f(x)dx$ and $\displaystyle\int_7^4 f(x)dx$ using graphs.
- * Practice: Finding definite integral using properties. (4 problems)
- $\rhd$ Definite integral on adjacent intervals (3:05) Explain the property: $\displaystyle\int_a^b f(x) dx=\displaystyle\int_a^c f(x) dx+\displaystyle\int_c^b f(x) dx$
- $\rhd$ Breaking up the integral’s interval (7:24) Evaluate definite integral with geometry.
- $\rhd$ Merging definite integrals over adjacent intervals (4:01) Evaluate definite integral using properties.
- * Practice: Finding definite integral over adjacent intervals. (4 problems)