Exam 2 Problem 6

Your classmate, Yinhe, pointed out that the part b problem actually diverges.

This is the Improper integral in question:

$latex  \int_{0}^{\infty} \frac {1}{2+sin^2 x} dx$

We can use a simple comparison test.

\[sin^2 x ≤ 1\]

\[

2 +sin^2 x  ≤ 3

\] \[

\frac {1}{2+sin^2 x} ≥ 1/3

\]

$latex  \int  \frac {1}{2+sin^2 x}  dx ≥ \int  \frac {1}{3} dx = \frac {x}{3} + C $

Since $latex \lim_{x \to \infty} \frac {x}{3} } = \infty$

$latex  \int_{0}^{\infty} \frac {1}{3} dx$ diverges

And so $latex  \int_{0}^{\infty} \frac {1}{2+sin^2 x} dx$ also diverges.

Leave a Reply

Your email address will not be published. Required fields are marked *