Solve: $latex A = \int \frac {1}{(4+x^2)^2} dx$
This is the form of arctan so we use the substitution
$2tan(\theta) = x
the “2” is from “4” + x^2
dx = 2 sec^2\theta d\theta
Simplify: 4+x^2 = 4(1+tan^2\theta) = 4 sec^2\theta
Substitute: A = \int \frac{2 sec^2\theta d\theta}{(4sec^2\theta)^2}
= 1/8 \int cos^2\theta d\theta
We have solved \int cos^2\theta d\theta \qquad before.
If you work through it you should get
\int cos^2\theta d\theta = \frac{\theta}{2} + \frac{2sin\theta cos\theta}{4}
Substitute for \theta : \theta = arctan(x/2)
sin\theta = \frac{x}{\sqrt{x^2 +4}}
and \qquad cos\theta = \frac{{2}}{\sqrt{x^2 +4}}
Prove out the final result:$
$A = \frac{ arctan( x/2)}{2} +\frac {{x}}{x^2 +4} + C
$