In this section, we will learn how to operate (multiply and divide) numbers in scientific notation.  

 

There is a mathematical scientific notation which is very useful for writing very large and very small numbers.

For example:

The number 45,600,000 is a large number,  and it is 4.56Γ—10,000,000. So it can be written as 4.56Γ—107, and 4.56Γ—107 is the number in scientific notation. 

The number 0.00006772 is a small number, and it is 6.772Γ—0.00001=6.772Γ—1100000=6.772Γ—1105=6.772Γ—10βˆ’5, and 6.772Γ—10βˆ’5 is the number in scientific notation .     (Note that in the last step, we used the definition of negative power mentioned in the section 3.1) 

 

Scientific Notation:

A number is said to be written in scientific notation if it is written as

aΓ—10n.

Here the absolute value of number |a| must be greater than (or equal) to 1 and less than 10,  1≀a<10, and the decimal number a  is followed by multiplication by a power of 10.

 

Example: The given numbers are not in scientific notation. Modify each so that your answer is in scientific notation. 

a)     βˆ’225,000=βˆ’2.25Γ—105

b)     0.0155=1.55Γ—10βˆ’2

c)     56.7Γ—108=5.67Γ—10Γ—108=5.67Γ—109  (Note that for scientific notation, the number a must be between 1 and 10)

d)     βˆ’0.88Γ—10βˆ’4=βˆ’8.8Γ—10βˆ’1Γ—10βˆ’4=8.8Γ—10βˆ’5  (Note that for scientific notation, the number a must be between 1 and 10)

 

Multiply Two Numbers in Scientific Notation:

(aΓ—10m)(bΓ—10n)=(aβ‹…b)Γ—10m+n

Divide Two Numbers in Scientific Notation:

aΓ—10mbΓ—10n=abΓ—10mβˆ’n

 

Example: Perform the given operation and write your answer in scientific notation:

a)     (6.2Γ—108)(3.0Γ—107=(6.2)(3.0)Γ—108+7=18.6Γ—1015

         =1.86Γ—10Γ—1015=1.86Γ—1016

b)     4Γ—1058Γ—10βˆ’3=48Γ—105βˆ’(βˆ’3)=0.5Γ—108

         =5Γ—10βˆ’1Γ—108=5Γ—107

 

 

Practice Problems: 

1. Perform the given operation and write your answer in scientific notation:

(a)   (1.5Γ—106)(2.7Γ—107

(b)   (βˆ’6.6Γ—10βˆ’6)(7Γ—109 

(c)   5.1Γ—1051.7Γ—102

(d)   2.6Γ—104βˆ’5.2Γ—10βˆ’2    

 

Answer Key: 1(a)         (b)          (c)            (d)                     

 

For more detailed explanation, please read: Arithmetic|Algebra Chapter 6.