In this section, we will learn how to (1) simplify fractions and (2) multiply and divide fractions.  

 

Fractions are rational numbers. They look like  $\dfrac{p}{q}$  where numerator p and denominator q are integers, and  denominator q can never be 0.

 

When operating with fractions, your final answer should be simplified. 

Simplifying Fractions : 

  1. Cancel out the common factors of the numerator and the denominator.

  2. A fraction is simplified when the numerator and the denominator have no common factors. 

Example: Simplify the following fractions. 

a)    $\dfrac{15}{35}=\dfrac{3\cdot 5}{7\cdot 5}=\dfrac{3}{7}$       (cancel out 5) 

b)   $-\dfrac{48}{18}=-\dfrac{8\cdot 6}{3\cdot 6}=-\dfrac{8}{3}$       (cancel out 6) 

 

Multiplying Fractions : 

  1. Multiply the numerators and the denominators of the two fractions.

$\dfrac{a}{b}\cdot \dfrac{c}{d} = \dfrac{a\cdot c}{b\cdot d}$

       2.   Simply the result. 

 

Example: Multiply the following fractions.

a)    $\dfrac{14}{3}\cdot\dfrac{9}{7}=\dfrac{14\cdot 9}{3\cdot 7} = \dfrac{2\cdot 7\cdot 3\cdot 3}{3\cdot 7} = \dfrac{2\cdot 3}{1}=6$

Note: when multiplying fractions, it is easier to cancel out the common factors before multiplying out the numerators and denominators. 

b)    $\dfrac{3}{11}\cdot\dfrac{5}{6}=\dfrac{3\cdot 5}{11\cdot 6} = \dfrac{3\cdot 5}{11\cdot 2\cdot 3} = \dfrac{5}{11\cdot 2}=\dfrac{5}{22}$

 

 

The reciprocal of a fraction   $\dfrac{p}{q}$   is the fraction formed by  switching the numerator and denominator, namely   $\dfrac{q}{p}$. 

For example: 

the reciprocal of  $\dfrac{3}{5}$  is $\dfrac{5}{3}$;

the reciprocal of   $\dfrac{-2}{7}$  is $\dfrac{7}{-2}=\dfrac{-7}{2}=-\dfrac{7}{2}$;

the reciprocal of  $\dfrac{1}{8}$  is $\dfrac{8}{1}=8$;

the reciprocal of  $4=\dfrac{4}{1}$  is $\dfrac{1}{4}$. 

 

Dividing Fractions : 

  1. Dividing fractions is to multiply the fraction by the reciprocal of the second fraction.

$\dfrac{a}{b}\div \dfrac{c}{d} =\dfrac{a}{b}\cdot \dfrac{d}{c} = \dfrac{a\cdot d}{b\cdot c}$

       2.   Simply the result. 

 

Example: Divide the following fractions.

a)    $\dfrac{8}{3}\div\dfrac{4}{5}=\dfrac{8}{3}\cdot\dfrac{5}{ 4}= \dfrac{8\cdot 5}{3\cdot 4} = \dfrac{2\cdot 4\cdot 5}{3\cdot 4} = \dfrac{2\cdot 5}{3}=\dfrac{10}{3}$

b)    $\dfrac{5}{12}\div-\dfrac{3}{16}=\dfrac{5}{12}\cdot-\dfrac{16}{ 3}= -\dfrac{5\cdot 16}{12\cdot 3} = -\dfrac{5\cdot 4\cdot 4}{3\cdot 4\cdot 3} =-\dfrac{5\cdot 4}{3\cdot 3}=-\dfrac{20}{9}$

c)    $13\div-\dfrac{1}{4}=13\cdot (-4)= -52$

 

Practice Problems: 

1.   Simplify the following fractions:

(a)   $\dfrac{32}{36}$

(b)   $-\dfrac{45}{15}$

2.   Multiply the following fractions:

(a)   $\dfrac{6}{10}\cdot\dfrac{5}{15}$

(b)   $-\dfrac{7}{11}\cdot\dfrac{33}{14}$

3.   Divide the following fractions:

(a)   $\dfrac{2}{5}\div\dfrac{6}{7}$

(b)   $-\dfrac{5}{9}\div\dfrac{7}{12}$

 

Answer Key: (a).         (b).          (c).            (d).             (e).            

 

For more detailed explanation, please read: Arithmetic|Algebra Chapter 2.