Algebraic equations contain both numbers and variables. In this section, we will learn how to evaluate algebraic expressions when the values of the variables are given. 

 

A mathematical expression that consists of variables, numbers and algebraic operations is called an algebraic expression.

For example: 30x+20y and 5x3yβˆ’2xy2βˆ’z+4 are algebraic expressions. 

Evaluate an algebraic expression means to find the value of the expression when the variables are substituted by certain numbers. 

For example: when x=2 and y=3, the value of the expression 30x+20y is 30β‹…2+20β‹…3=60

 

Evaluating an Expression: 

  1. Replace each variable by the given numerical value.

  2. Simplify the resulting expression. Be careful to follow the order of operations.

Examples: Evaluate for a=1, b=2, c=4, and d=βˆ’1.

a) 5ab=5(1)(2)=10 

b) 7b+caβˆ’d=7(2)+(4)1βˆ’(βˆ’1)=14+41+1=9

 

Examples: Evaluate for a=βˆ’3,  b=5,  c=βˆ’2, and d=7.

a)    4cβˆ’2b=4(βˆ’2)βˆ’2(5)=βˆ’8βˆ’10=βˆ’18

b)    b2+b=(5)2+5=25+5=30

c)    (c+a)(c2βˆ’ac+a2)

        =((βˆ’2)+(βˆ’3))((βˆ’2)2βˆ’(βˆ’3)(βˆ’2)+(βˆ’3)2)

        =(βˆ’5)(4βˆ’6+9)

        =(βˆ’5)(7)

        =βˆ’35

 

Example: Find the area of a triangle with height of 20in and a base of 30in.

The area is A=12β‹…bβ‹…h=12β‹…20inβ‹…30in=300in2.

 

 

Practice Problems: 

1.  Evaluate each algebraic expression for the given value(s).

(a)   x2+8x for x=6

(b)   x2βˆ’x+7 for x=3

(c)    6+3(xβˆ’5)3 for x=7

(d)    x2βˆ’3(xβˆ’y) for x=7 and y=2

2.  Find the area of a circle with radius 7 cm, keep  your answer with Ο€. (Note that the area of a circle is Ο€r2.)

 

Answer Key: 1.(a) 84      1.(b) 13         1 .(c) 30           1 .(d) 34             2. 49Ο€cm2        

 

For more detailed explanation, please read: Arithmetic|Algebra Chapter 4.