Learning Outcomes
- Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
- Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
- Explain the relationship between differentiation and integration.
Textbook
- Chapter 5.3 The Fundamental Theorem of Calculus
Textbook Assignment
- p. 562: 149, 151, 153, 170, 171, 173, 174, 177, 179-183 all
WeBWork Assignment
- Integration-Fundamental Theorem
Exit problems of the session
-
Find the derivative using the Fundamental Theorem of Calculus:
(a). $\dfrac{d}{dx}\displaystyle\int_1^x 3te^{t^2}dt$ (b). $\dfrac{d}{dx}\displaystyle\int_0^x \sin^2 t dt$ - Evaluate following definite integrals.
(a). $\displaystyle\int_1^3 3x(x^2-1)dx$ (b). $\displaystyle\int_1^4 \dfrac{x^2+\sqrt{x}}{x}dx$ (c). $\displaystyle\int_0^1 (3e^t-2\cos t)\;dt$
Key Concepts
- Fundamental Theorem of Calculus, Part 1:
If $f(x)$ is a continuous function over an interval $[a, b]$, and the function $F(x)$ is defined by
$F(x)=\displaystyle\int_a^x f(x) dx$, then $F'(x)=f(x)$.
- Fundamental Theorem of Calculus, Part 2:
If $f(x)$ is a continuous function over an interval $[a, b]$, and $F(x)$ is any antiderivative of $f(x)$, then
$\displaystyle\int_a^b f(x) dx=F(b)-F(a)$.
Videos and Practice Problems of Selected Topics
- $\rhd$ The Fundamental Theorem of Calculus (8:02) Connecting differentiation and integration.
- $\rhd$ Finding the derivative using the Fundamental Theorem of Calculus (3:23) Find $\dfrac{d}{dx}\displaystyle\int_{19}^x\sqrt[3]t dt$.
- * Practice: Finding the derivative using the Fundamental Theorem of Calculus. (4 problems)
- $\rhd$ Definite integrals: reverse power rule (4:13) Find $\displaystyle\int_{-3}^{5}4dx$ and $\displaystyle\int_{-1}^{3}7x^2dx$.
- * Practice: Definite integrals: reverse power rule. (4 problems)
- $\rhd$ Definite integrals: rational functions (5:04) Find $\displaystyle\int_{-1}^{2}\dfrac{16-x^3}{x^3}dx$.
- $\rhd$ Definite integrals: radical functions (3:50) Find $\displaystyle\int_{-1}^{8}12\sqrt[3]xdx$.
- $\rhd$ Definite integrals: trigonometric functions (4:59) Find $\displaystyle\int_{11\pi/2}^{6\pi}9\sin(x)dx$.
- $\rhd$ Definite integrals: logarithmic functions (7:26) Find $\displaystyle\int_{2}^{4}\dfrac{6+x^2}{x^3}dx$.
- *Practice: Definite integrals. (4 problems)