Complex Numbers

  1. \rhd Plotting numbers on the complex plane (1:13) Plotting the numbers: -2+2i, 5+2i, 1+5i and 4-4i.
  2. \rhd Absolute value of a complex numbers  (3:32) Finding the absolute value of z=3-4i
  3. \rhd Absolute value & angle of complex numbers (13:03)  Finding the absolute value and the argument of \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}i.
  4. \rhd Polar & rectangular forms of complex numbers (12:15) Finding the polar form of z=-3+2i.
  5. * Practice: Polar & rectangular forms of complex numbers. (4 problems)
  6. \rhd Multiplying and dividing complex numbers in polar form (3:26) Divide: \dfrac{6(\cos(60^{\circ})+i \sin(60^{\circ}))}{3(\cos(90^{\circ})+i \sin(90^{\circ}))}.  Multiply: [2(\cos(45^{\circ})+i \sin(45^{\circ}))]\cdot [5(\cos(30^{\circ})+i \sin(30^{\circ}))].