SessionDateTopicWeBWorKHomework
1Thurs 1/255.1 Sequences (p.427--444)Series - SequencesP. 447: 1, 3, 7, 9, 12, 13--15 odd, 23--37 odd, 47--51 odd
2Tues 1/305.2 Infinite Series (p.450--459)Series - Infinite SeriesP. 466: 67--74, 76, 77, 79, 80, 83--85 odd, 89β€”95 odd
3Thurs 2/15.3 The Divergence and Integral Tests (p.471--478)Series - Divergence TestP. 482: 138, 139--145 odd, 152β€”155, 158, 159, 161, 163
4Tues 2/65.4 Comparison Tests (p.485--492)Series - Comparison TestsP. 493: 194β€”197all, 199, 200, 202, 204β€”206 all, 211
(optional: 222-223)
5Thurs 2/85.5 Alternating Series (p.496--502)Series - Alternating SeriesP. 505: 250--257 all, 261β€”264 all, 266, 267
6Tues 2/135.6 Ratio and Root Tests (p.509--519)Series - Ratio and Root TestsP. 522: 317--320 all, 323, 325, 328, 329--335 odd, 349, 351
7Thurs 2/156.1 Power Series and Functions (p.531--537)
6.2 Properties of Power Series (p.544--548, 552--557)
Series - Power SeriesP. 541: 13-21 odd, 24, 28
P. 558: 87β€”90 all, 96, 97
8Tues 2/20First Examination
9Tues 2/271.1 Approximating Areas (p. 5 – 20)Application - Approximation of AreaP. 21: 1 – 7 odd, 12, 15, 16, 17
10Thurs 2/291.2 The Definite Integral (p. 27 – 39)
1.3 The Fundamental Theorem of Calculus (p. 50 – 57)
Integration - Definite Integrals
Integration - Fundamental Theorem (constant bounds)
Integration - Fundamental Theorem (variable bounds)
P. 42: 71, 73, 75, 76, 77, 80, 88, 89, 90, 92
P. 60: 170, 171, 172, 182, 183, 184, 187
11Tues 3/54.10 Antiderivatives (p. 485 – 496)
[Volume 1]
Integration - AntiderivativesP. 497: 465, 470, 471, 476, 477, 481, 484, 490, 492, 493,
495, 496, 499, 500, 501
12Thurs 3/71.5 Substitution (p. 82 – 89)
1.6 Integrals Involving Exponential and Logarithmic Functions (p. 94 – 96, 98 - 102)
Integration - Substitution
Integration - Exponential and Logarithmic
P. 90: 256, 258, 261, 265, 271, 273, 275, 276, 292, 293
P. 103: 320, 321, 322, 325, 327, 328, 330, 332, 335, 337,
338, 355 – 363 all
13Tues 3/123.1 Integration by Parts (p. 261 – 268)Integration - Integration by PartsP. 270: 7, 8, 13, 15, 16, 19, 20, 27, 31, 38, 42, 43, 45
14Thurs 3/143.2 Trigonometric Integrals (p. 273 – 282)Integration - Trigonometric IntegralsP. 283: 73, 74, 78 – 85 all, 91, 97, 98, 100
15Tues 3/193.3 Trigonometric Substitution (p. 285 – 293)Integration - Trigonometric SubstitutionP. 296: 126, 128, 135 – 143 odd, 147 – 153 odd
16Thurs 3/213.3 Trigonometric Substitution (continued)
[cover problems #132 on p. 196 and #164 on p. 297]
P. 296: 131, 133, 134, 160 – 163 all, 164
17Tues 3/263.4 Partial Fraction Decomposition (p. 298 – 303)Integration - Partial FractionsP. 308: 183, 185, 187, 196, 197, 199, 200 – 204 all
18Thurs 3/28Midterm Examination
19Tues 4/23.4 Partial Fraction Decomposition (cont.) (p. 303 – 306)P. 308: 189, 198, 205, 206, 207, 209 – 212 all, 215, 217
20Thurs 4/43.7 Improper Integration (p. 330 – 340)Integration - Improper IntegralsP. 343: 347 – 373 odd
21Tues 4/96.3 Taylor and Maclaurin Polynomials (p.562--567)Series - Taylor and Maclauren PolynomialsP. 578: 118β€”123 all
22Thurs 4/116.3 Taylor and Maclaurin Polynomials (continued) (p.567--573)P. 578: 125, 127, 28, 133, 135
23Tues 4/166.3 Taylor and Maclaurin Series (p.561--562, 573--576)
6.4 Working with Taylor Series (p.584--587, 590--592)
Series - Taylor and Maclauren Series
P. 578: 118-123 all, 140β€”147 all, 151β€”155 all
P. 596: 203, 206, 207, 209, 219--223 odd
24Thurs 4/18Third Examination
25Thurs 5/22.1 Areas Between Two Curves (p. 122 – 128)Applications - Area Between CurvesP. 131: 1 – 7 all, 11, 15 – 21 all, 23
P. 271: 63
26Tues 5/72.2 Determining Volumes by Slicing (p. 141 – 149)Applications - Volumes by SlicingP. 150: 58, 59, 74 – 80 all, 98 – 102 all
Find the volume of the solid obtained by rotating the region bounded by the curves y = x2, y = 12-x, x = 0 and x β‰₯ 0
about (a) the x–axis; (b) the line y = -2; (c) the line y = 15;
(d) the y-axis; (e) the line x = -5; (f) the line x = 7.
27Thurs 5/92.3 Volumes of Revolution: Cylindrical Shells (p. 156 – 165)Applications - Volumes of RevolutionP. 166: 120 – 131 all, 140-143 all, 145, 148, 158, 159
P. 271: 61
28Tues 5/142.4 Arc Length of a Curve and Surface Area (p. 169 – 179)Applications - Arc Length
Applications - Surface Area
P. 180: 165, 166, 171, 173, 174, 176, 177, 191, 192
P. 284: 119
29Tues 5/18Review
30Thurs 5/20Final Examination
Print this page