Session | Date | Topic | WeBWorK | Homework |
---|---|---|---|---|
1 | Thurs 1/25 | 5.1 Sequences (p.427--444) | Series - Sequences | P. 447: 1, 3, 7, 9, 12, 13--15 odd, 23--37 odd, 47--51 odd |
2 | Tues 1/30 | 5.2 Infinite Series (p.450--459) | Series - Infinite Series | P. 466: 67--74, 76, 77, 79, 80, 83--85 odd, 89β95 odd |
3 | Thurs 2/1 | 5.3 The Divergence and Integral Tests (p.471--478) | Series - Divergence Test | P. 482: 138, 139--145 odd, 152β155, 158, 159, 161, 163 |
4 | Tues 2/6 | 5.4 Comparison Tests (p.485--492) | Series - Comparison Tests | P. 493: 194β197all, 199, 200, 202, 204β206 all, 211 (optional: 222-223) |
5 | Thurs 2/8 | 5.5 Alternating Series (p.496--502) | Series - Alternating Series | P. 505: 250--257 all, 261β264 all, 266, 267 |
6 | Tues 2/13 | 5.6 Ratio and Root Tests (p.509--519) | Series - Ratio and Root Tests | P. 522: 317--320 all, 323, 325, 328, 329--335 odd, 349, 351 |
7 | Thurs 2/15 | 6.1 Power Series and Functions (p.531--537) 6.2 Properties of Power Series (p.544--548, 552--557) | Series - Power Series | P. 541: 13-21 odd, 24, 28 P. 558: 87β90 all, 96, 97 |
8 | Tues 2/20 | First Examination | ||
9 | Tues 2/27 | 1.1 Approximating Areas (p. 5 β 20) | Application - Approximation of Area | P. 21: 1 β 7 odd, 12, 15, 16, 17 |
10 | Thurs 2/29 | 1.2 The Definite Integral (p. 27 β 39) 1.3 The Fundamental Theorem of Calculus (p. 50 β 57) | Integration - Definite Integrals Integration - Fundamental Theorem (constant bounds) Integration - Fundamental Theorem (variable bounds) | P. 42: 71, 73, 75, 76, 77, 80, 88, 89, 90, 92 P. 60: 170, 171, 172, 182, 183, 184, 187 |
11 | Tues 3/5 | 4.10 Antiderivatives (p. 485 β 496) [Volume 1] | Integration - Antiderivatives | P. 497: 465, 470, 471, 476, 477, 481, 484, 490, 492, 493, 495, 496, 499, 500, 501 |
12 | Thurs 3/7 | 1.5 Substitution (p. 82 β 89) 1.6 Integrals Involving Exponential and Logarithmic Functions (p. 94 β 96, 98 - 102) | Integration - Substitution Integration - Exponential and Logarithmic | P. 90: 256, 258, 261, 265, 271, 273, 275, 276, 292, 293 P. 103: 320, 321, 322, 325, 327, 328, 330, 332, 335, 337, 338, 355 β 363 all |
13 | Tues 3/12 | 3.1 Integration by Parts (p. 261 β 268) | Integration - Integration by Parts | P. 270: 7, 8, 13, 15, 16, 19, 20, 27, 31, 38, 42, 43, 45 |
14 | Thurs 3/14 | 3.2 Trigonometric Integrals (p. 273 β 282) | Integration - Trigonometric Integrals | P. 283: 73, 74, 78 β 85 all, 91, 97, 98, 100 |
15 | Tues 3/19 | 3.3 Trigonometric Substitution (p. 285 β 293) | Integration - Trigonometric Substitution | P. 296: 126, 128, 135 β 143 odd, 147 β 153 odd |
16 | Thurs 3/21 | 3.3 Trigonometric Substitution (continued) [cover problems #132 on p. 196 and #164 on p. 297] | P. 296: 131, 133, 134, 160 β 163 all, 164 | |
17 | Tues 3/26 | 3.4 Partial Fraction Decomposition (p. 298 β 303) | Integration - Partial Fractions | P. 308: 183, 185, 187, 196, 197, 199, 200 β 204 all |
18 | Thurs 3/28 | Midterm Examination | ||
19 | Tues 4/2 | 3.4 Partial Fraction Decomposition (cont.) (p. 303 β 306) | P. 308: 189, 198, 205, 206, 207, 209 β 212 all, 215, 217 | |
20 | Thurs 4/4 | 3.7 Improper Integration (p. 330 β 340) | Integration - Improper Integrals | P. 343: 347 β 373 odd |
21 | Tues 4/9 | 6.3 Taylor and Maclaurin Polynomials (p.562--567) | Series - Taylor and Maclauren Polynomials | P. 578: 118β123 all |
22 | Thurs 4/11 | 6.3 Taylor and Maclaurin Polynomials (continued) (p.567--573) | P. 578: 125, 127, 28, 133, 135 | |
23 | Tues 4/16 | 6.3 Taylor and Maclaurin Series (p.561--562, 573--576) 6.4 Working with Taylor Series (p.584--587, 590--592) | Series - Taylor and Maclauren Series | P. 578: 118-123 all, 140β147 all, 151β155 all P. 596: 203, 206, 207, 209, 219--223 odd |
24 | Thurs 4/18 | Third Examination | ||
25 | Thurs 5/2 | 2.1 Areas Between Two Curves (p. 122 β 128) | Applications - Area Between Curves | P. 131: 1 β 7 all, 11, 15 β 21 all, 23 P. 271: 63 |
26 | Tues 5/7 | 2.2 Determining Volumes by Slicing (p. 141 β 149) | Applications - Volumes by Slicing | P. 150: 58, 59, 74 β 80 all, 98 β 102 all Find the volume of the solid obtained by rotating the region bounded by the curves y = x2, y = 12-x, x = 0 and x β₯ 0 about (a) the xβaxis; (b) the line y = -2; (c) the line y = 15; (d) the y-axis; (e) the line x = -5; (f) the line x = 7. |
27 | Thurs 5/9 | 2.3 Volumes of Revolution: Cylindrical Shells (p. 156 β 165) | Applications - Volumes of Revolution | P. 166: 120 β 131 all, 140-143 all, 145, 148, 158, 159 P. 271: 61 |
28 | Tues 5/14 | 2.4 Arc Length of a Curve and Surface Area (p. 169 β 179) | Applications - Arc Length Applications - Surface Area | P. 180: 165, 166, 171, 173, 174, 176, 177, 191, 192 P. 284: 119 |
29 | Tues 5/18 | Review | ||
30 | Thurs 5/20 | Final Examination |
Recent Comments