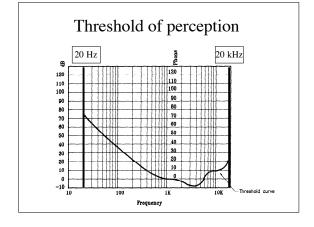
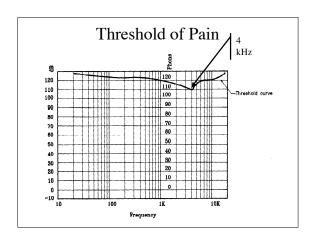
Frequency Response

Definition


- Relationship between input and output
- Regards frequency and amplitude across the acoustic spectrum
- A flat frequency response would have an identical output and input.


Perception of Loudness


• Page 36 in your Textbook

The Phon

- A unit of measurement relating the perception of equal loudness across the frequency spectrum
- 1 kHz is the reference level: phons are equal to the power decibel at this frequency.
- Phons are different from dB at other frequencies.

Characteristics of Equal-Loudness

- Optimum sensitivity at 3 kHz
- Best range is 2 kHz to 4 kHz
- The softer the overall sound, the more hearing concentrates in central bandwidth
- This means we hear mainly midrange information in low amplitude sounds
- Low frequencies are much more present relative to mid range frequencies at loud amplitude levels

Peaks have Significantly more effect on perception than valleys

BAD NOISE

- Undesired audio elements within a signal
- Undesired acoustical information within the listening environment

Hiss

- · Present in all electrical systems
- Random current flow in circuits at very low levels
- · Also called "White Noise"
- · Equal energy per frequency
- We experience this in our own listening environment

Hum

- Leakage of AC power into the Audio Circuit
- Power supply problems
- grounding problems

Buzz

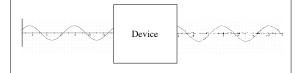
- Richer harmonic spectrum than hum, with all higher harmonics present
- SCR noise, dimer racks, active electronic AC power.
- improper shielding

Crosstalk

- Sound travelling across a circuit or channel
- You hear this in radio broadcasts when two different stations are heard simultaneously

Static

- Intermittent random noise events caused by radio frequency interference
- You hear this in AM radio when traveling away from the station
- Distant Lightning


Harmonic Distortion Definition

- The production of harmonic frequencies by an electronic system when a signal is applied at the input.
- When an input signal goes through nonlinear electronic circuitry, the output signal will include some harmonic distortion (or unwanted frequencies).

Why?

Thought Experiment

• Sine Wave changes from input to output

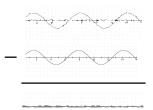
Thought Experiment

• Difference in Frequency/Energy chart will be?

$$= ?$$

Thought Experiment

• Difference in Frequency/Energy chart will be?


$$= ?$$

Thought Experiment

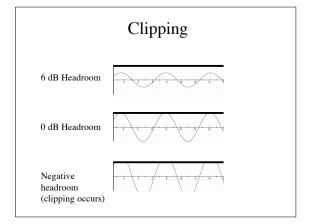
 Think about what will remain if the original sine wave is subtracted from the resultant wave.

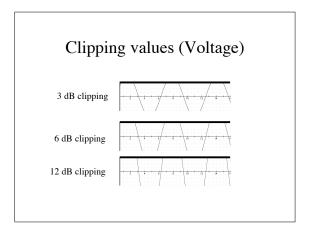
Thought Experiment

• The result is a final change.

Thought Experiment

- If each cycle has been effected in the same way, then the result will be periodic as well.
- Periodic results indicate a natural harmonic series over the modified cycle.
- If each cycle is effected differently, then the result is non-periodic, and the resulting distortion will be non-harmonic.


Type of "residue" will be determined by the type of harmonic distortion


Harmonic Distortion

- Creation of spurious harmonic frequencies not present in the original signal Useful for some types of effects
- · Overdriven guitars
- · vocal exciters.
- Caused by clipping of the waveform

Clipping

• Occurs when nominal signal exceeds peak level.

Additional clipping slowly increases the shape of the wave from a sin wave to a square wave.

• Square Wave contains all odd number partials at the amplitude of the inverse of their partial number

Intermodulation Distortion

 Combination of at least two input signals which interact to form new, enharmonic output frequencies.

Masking

• Generally a 10 dB difference in level will produce masking of the softer signal.