NYC College of Technolog Dr. David B Smith Professor John Huntington ©2004, all rights reserved

> Sound Propagation, Harmonic Motion, Frequency, and Wavelength

Definitions: Physical vs. Psycho-Acoustic

Definition of Sound: Physical

v American Heritage dictionary: "A vibratory disturbance in the pressure and density of a fluid, or in the elastic strain in a solid."

Definition of Sound: Psycho-Acoustic

". . . and capable of being detected by the organs of hearing."

Sound Propagation

 Air particles in compression/rarefaction (when viewed from a single point of reference)

How sound propagates

v Air molecules with neutral displacement

How sound propagates 5 As energy is transferred, original molecules now are too close to other molecules, and attempt to create equal spacing

Getting to know Frequency

- v Listen to different frequencies
- v View frequencies on screen

Speed of Sound

- v Speed 1130 ft/sec at 59°F, or "Standard Temperature"
- v Travels roughly 1 ms/Foot
- v Remember this number!!!

Definitions: Wavelength The distance that a single cycle travels Wavelength is measured in feet or meters (any unit of distance)

What is the wavelength of a 1000Hz sound wave? $Wavelength = \frac{Speed}{Frequency}$ $Wavelength = \frac{1130 ft / s}{1000 cycles / s(Hz)}$

What is the wavelength of a 1000Hz sound wave?

$$Wavelength = \frac{1130 ft/s}{1000 cycles/s(Hz)}$$

$$1.13 = \frac{ft}{cycle}$$

What is the wavelength of a 60Hz sound wave?

$$Wavelength = \frac{1130 ft/s}{60 Hz}$$

18.83 ft

What is the wavelength of a 6000Hz sound wave?

$$Wavelength = \frac{1130 \, ft \, / \, s}{6000 Hz}$$

.19 ft

Definitions: Period The length in time that it takes one cycle to complete Period is measured in SECONDS (s)

Period

 $Period = \frac{1}{Frequency}$

Frequency is Cycles per Second

v Period is time one cycle takes

v Period is inverse of frequency

What is the period of a 1000Hz sound wave?

$$Period = \frac{1s}{1000 cycles/s}$$

.001s

1ms

Period/frequency relationship

Frequency is the INVERSE of period

$$Frequency = \frac{1}{Period}$$

Thus, FLIP f to get p, and FLIP p to get f

Period/Wavelength Relationship

Period times the speed of sound = Wavelength

 $Wavelength = Period \Leftrightarrow Speedof Sound$

Hearing Frequency Range

v20 Hz - 20,000 Hz vRemember this!

Octave

- v A 2:1 relationship of frequency
- v Thus 200 Hz is 1 octave higher than 100 Hz
- v Also referred to as 8va

Math: How many Octaves in the human range of hearing?

- v 20
- v 40
- v 80
- v Etc....

Note about linear vs. exponential

Half of the frequency range is in the last (top) octave.

JND for frequency

- v Psychoacoustical term
- v "Just noticable difference"
- v Is about 3 Hz.
- However, the ear can hear transitions better than steady states.
- So it is possible to hear an abrupt transition from 300 Hz - 202 Hz.

What is the implication of JND in terms of the frequency range?

What is the implication of JND in terms of the frequency range?

 Hint: compare octave ranges an frequency range as we move through the human range of hearing.

Some Pitch to Frequency Relationships

- $_{v}$ Middle C = 256 Hz
- $_{v}$ A for tuning = 440 Hz.
- Note that each orchestra can tune to a different "A".