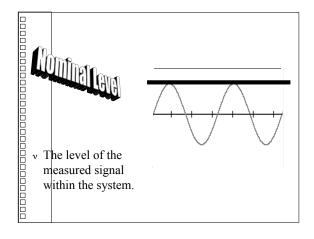
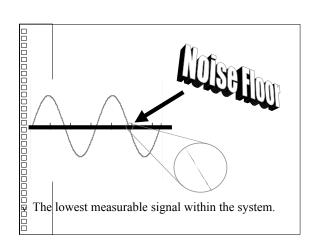
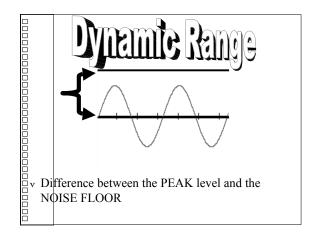
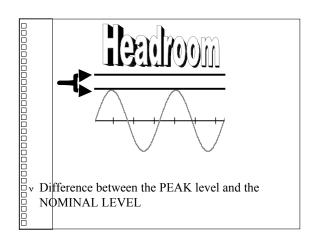

Amplitude and deciBels

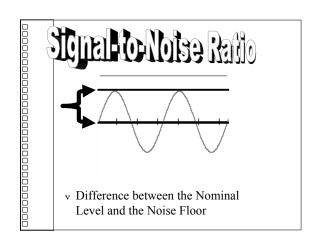

What is Amplitude?

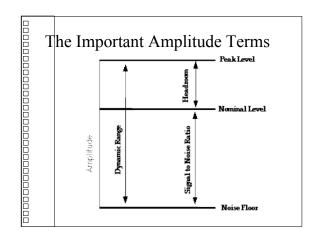

- The amount of "displacement" of a waveform
- Amplitude in audio is also called "Loudness"
- v Changes in loudness create "Dynamics"
- v Change in amplitude in electronics is "Gain"

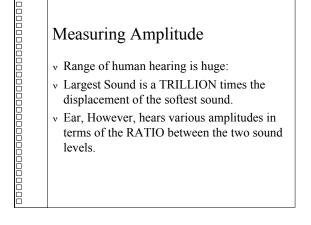
What are the levels associated with amplitude?

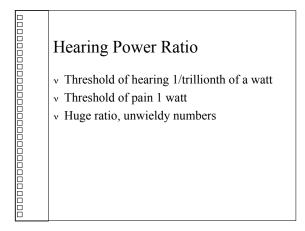

- v Peak Level
- v Nominal Level
- v Noise Floor

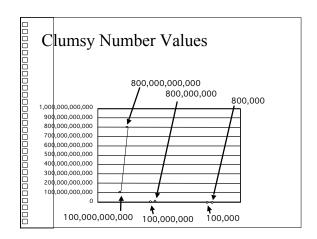


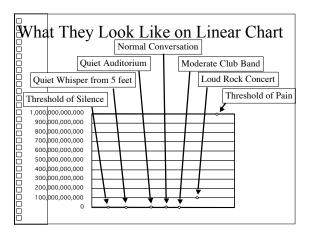


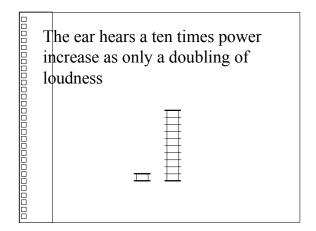


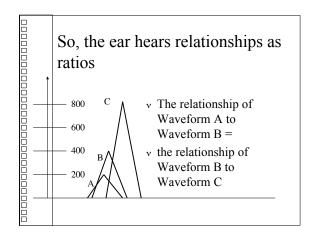

Amplitude Relationships v Dynamic Range v Headroom v Signal-to-Noise (S/N) ratio

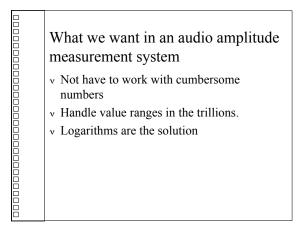


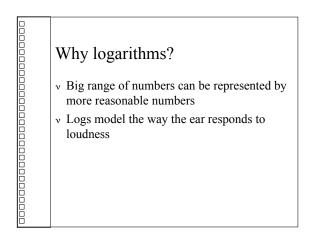


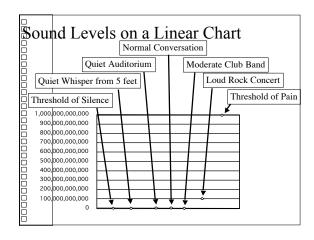


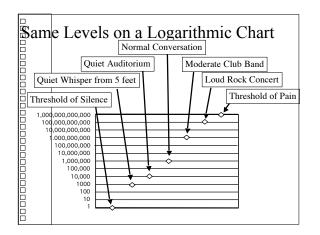


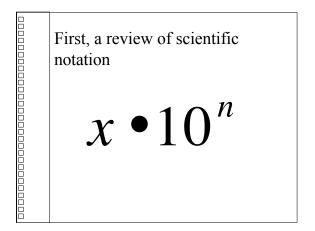


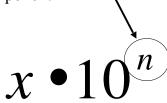

00000000		Some sound levels using normal numbers	
¥	One		Threshold of Silence
	One	Thousand	Quiet Whisper from 5 feet
¥	Ten	Thousand	Quiet Auditorium
	One	Million	Normal Conversation
¥	One	Billion	Moderate Club Band
	One	Hundred Billion	Loud Rock Concert
¥	One	Trillion	Threshold of Pain








Ratios v Audio is therefore interested in ratios. v How much louder/softer is this than that? $\frac{this}{that}$


Some Scientific Notation Conversions

$$500 = 5.0 *10^{2}$$

$$6,000,000 = 6.0*10^6$$

$$200,000,000 = 6.0 *10^{8}$$

$$40,000,000,000 = 4.0 *10^{10}$$

What is a logarithm?

The power to which a number must be raised to equal another number

$$number = base^{\exp onent}$$

$$100 = 10^2$$

$$anti \log = base^{\log}$$

Logarithm Example

v The power to which a number must be raised to equal another number

$$\log_{base} number = \exp onent$$

$$\log_{10} 100 = ?$$

$$\log_{10} 100 = 2$$

Another view of logs for math brains:
What we have is a way to express
MULTIPLICATION using
ADDITION

Note that multiplying the number by 10 is the same as adding 1 to the exponent

$$3 \cdot 10^2 = 300$$

$$3 \cdot 10^3 = 3000$$

Multiplying the number by 1000 is the same as adding 3 to the exponen

$$3 \cdot 10^{2} = 300$$
$$8 \cdot 10^{5} = 300,000$$

Audio relationships

- Thus, we will always say "Waveform A is x greater than Waveform B"
- v We will express these as a ratio

$$m{n} = rac{ ext{Waveform A}}{ ext{Waveform B}}$$

The Bel

 The Value of n, expressed as a log, is a measurement of relative acoustic amplitude called a Bel

$$n = \frac{\text{Waveform A}}{\text{Waveform B}}$$

$$Bel = \log(n)$$

Bels

- v Power ratios of large audio quantities.
- v Named after Alexander Graham Bell

relative power =
$$\log_{10}(\frac{P1}{P0})$$

Why use dB's?

- v Bels too coarse
- $\nu\,$ dB's correspond to the way ears work
- $\nu\,$ Sound Levels are always measured as a RATIO to each other
- v There is no such thing as an absolute amplitude
- Even Acoustic Pressure is Measured against the threshold of Silence

deciBels—Power

$$Bels = \log_{10} \left(\frac{P1}{P0} \right)$$

DeciBel is 1/10th of a Bel, so there are 10 times as many bels, so the equation is:

$$deciBels = 10\log_{10}\left(\frac{P1}{P0}\right)$$

Sample deciBel calculation: Hearing Panga $deciBels = 10\log_{10}(\frac{P1}{P0})$ $10\log_{10}(\frac{1W}{.00000000001W}) = ?dB$ $10\log_{10}(1,000,000,000,000) = ?dB$ 10*12 = ?dB

10*12 = 120dB

If Waveform A is 2x the Pressure

If Waveform A is 10x the Power of Waveform B

$$? dB = 10 \cdot \log(\frac{A}{B}) \quad A = 10B$$

$$= 10 \cdot \log(\frac{10B}{B})$$

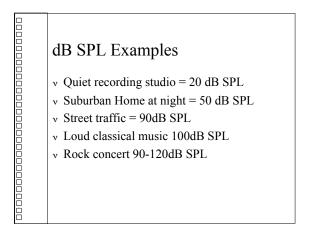
$$= 10 \cdot \log(10)$$

$$= 10 \cdot 1$$

$$= +10dB$$

of Waveform B
$$? dB = 10 \cdot \log(\frac{A}{B}) \quad A = 2B$$

$$= 10 \cdot \log(\frac{2B}{B})$$


$$= 10 \cdot \log(2)$$

$$= 10 \cdot .3$$

$$= +3dB$$

The decibel formula for pressure
$$dB = 20 \bullet \log(\frac{V_a}{V_b})$$

Sound Pressure Level (SPL) v 0 dB SPL = Threshold of hearing Pressure of 0.0002 dynes/cm²

Other dB References (you don't need to remember this!)

- v = 0 dBm = 1 mW (at 600 Ohms)
 - υ Relative power.
 - υ Slightly archaic.
- v = 0 dBu = .775 Volts
 - υ Same as dBm at 600 Ohm
- v = 0 dBV = 1 Volt
- v = 0 dBv = .775 Volts

Common dB Interface levels

- v -10dBV is consumer line level
- v +4dBm is professional line level (usually balanced)
- v You do need to remember this.

dB ear rules of thumb

- v 0dB is no change
- v 3dB is just barely louder, and represents a doubling of power
- v 10dB is twice as loud, and represents 10 times as much power
- v Remember these!