MAT 2580 Test 1 Practice Questions Spring 2012 Instructor: Terence Kivran-Swaine

1. Add the following matrices:

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)+\left(\begin{array}{ll}
d & 0 \\
e & f
\end{array}\right)
$$

2. For

$$
A=\left(\begin{array}{cccc}
13 & 24 & 56 & 78 \\
91 & -2 & -34 & -56 \\
-78 & -89 & 10 & 23
\end{array}\right)
$$

add $A+0_{3,4}$.
3. Multiply:

$$
2\left(\begin{array}{ccc}
1 & 0 & 2 \\
4 & 3 & 0 \\
0 & -4 & -1
\end{array}\right)
$$

4. For

$$
B=\left(\begin{array}{cccc}
4 & 3 & 2 & 1 \\
0 & -1 & -2 & -3 \\
-2 & -1 & 0 & 1 \\
2 & 3 & 4 & 5
\end{array}\right),
$$

compute $B-4 I_{4}$.
5. Multiply:

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) I_{2} .
$$

6. Multiply:

$$
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right) .
$$

7. Multiply

$$
\left(\begin{array}{ll}
2 & b \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
-1 & c \\
0 & -2
\end{array}\right) .
$$

8. Compute

$$
\left(\begin{array}{ll}
2 & b \\
0 & 3
\end{array}\right)^{T}
$$

9. Find the length of $\left(\begin{array}{c}-3 \\ 4 \\ -12\end{array}\right)$.
10. Build a $0-1$ matrix for the relation on $[2,3,4,5,6] \times$ $[2,3,4,5,6,8,9,10], x R y$ iff $\operatorname{gcd}(x, y)=1$.
11. For $L\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)$ if and only if $A\binom{x_{1}}{x_{2}}=\binom{y_{1}}{y_{2}}$ with

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

evaluate $L(-3,4)$.
12. For $Q(\vec{v})=y$ if and only if $\vec{v}^{\mathrm{T}} A \vec{v}=(y)$ with

$$
G=\left(\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right)
$$

evaluate $Q\binom{x}{y}$.
13. For the following function, f, from $[a, b, c, d, e]$ to ["vowel", "consonant"],

$$
\begin{aligned}
& A \mapsto \text { "vowel", } \\
& B \mapsto \text { "consonant", } \\
& C \mapsto \text { "consonant", } \\
& D \mapsto \text { "consonant", } \\
& E \mapsto \text { "vowel", }
\end{aligned}
$$

build the 0-1 matrix that represents f.
14. Mark which of the following $0-1$ matrices represents a finite relation which are functions from x to
y, which are onto functions from x to y and which are 1-to- 1 functions from x to y. Here the relation $x R y$ is true iff $\vec{v}_{y}{ }^{\mathrm{T}} C \vec{v}_{x}=(1)$.

C	is a function	is onto	is 1-to-1
$\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$			
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$			
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 0 & 0\end{array}\right)$			
$\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$			

15. Use elemetary row operations to complete the forward phase of the row reduction process on this matrix to produce a matrix in row echelon form:

$$
\left(\begin{array}{cccc}
0 & 1 & 2 & 4 \\
3 & -2 & -1 & -5 \\
-3 & 1 & 0 & 0
\end{array}\right)
$$

16. Use elemetary row operations to complete the backward phase of the row reduction process on this matrix to produce a matrix in row echelon form:

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & -2 & -1 & -5 \\
0 & 0 & -1 & 2
\end{array}\right) .
$$

17. Of the matrices below, please indicate which are
square(\square), lower triangular (\triangle), upper triangular (∇), diagonal (\backslash), symmetric (sym), in row-echelon form(ref), or in reduced row echelon form(rref). Here B is as in number 4.

D	(\square)	(\triangle)	(∇)	(\backslash)	$($ sym $)$	$($ ref $)$	(rref)
$0_{2,3}$							
I_{5}							
$B-B^{\mathrm{T}}$							
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$							
$\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$							
$\left(\begin{array}{ll}0 & 0 \\ 1 & 2\end{array}\right)$							
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$							
$\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$							

18. Please construct the 4×4 elementary matrix for the operation that swaps the second and fourth rows of a matrix when multiplying it on the left.

Extra Credit:

i. Prove that the sum of a square matrix and its transpose is symmetric.
ii. Find the flaw in this "proof" that the product of two
symmetric matrices is itself symmetric. Note that

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right) .
$$

Claim 1 (False Statement). The product of two $n \times n$ symmetric matrices is itself symmetric.

Proof. Let S_{1} and S_{2} represent two symmetric $n \times n$ matrices. Every symmetric matrix is the sum of a unique upper triagular matrix and its transpose. Let the corresponding upper triagular matrix for S_{i} be denoted T_{i}. Here is the calculation.

$$
\begin{aligned}
\left(S_{1} S_{2}\right)^{\mathrm{T}} & =\left(\left(T_{1}+T_{1}^{\mathrm{T}}\right)\left(T_{2}+T_{2}^{\mathrm{T}}\right)\right)^{\mathrm{T}} \\
& =\left(T_{1} T_{2}+T_{1}^{\mathrm{T}} T_{2}+T_{1} T_{2}^{\mathrm{T}}+T_{1}^{\mathrm{T}} T_{2}^{\mathrm{T}}\right)^{\mathrm{T}} \\
& =\left(T_{1} T_{2}\right)^{\mathrm{T}}+\left(T_{1}^{\mathrm{T}} T_{2}\right)^{\mathrm{T}}+\left(T_{1} T_{2}^{\mathrm{T}}\right)^{\mathrm{T}}+\left(T_{1}^{\mathrm{T}} T_{2}^{\mathrm{T}}\right)^{\mathrm{T}} \\
& =T_{2}^{\mathrm{T}} T_{1}^{\mathrm{T}}+T_{2}^{\mathrm{T}} T_{1}+T_{2} T_{1}^{\mathrm{T}}+T_{2} T_{1} \\
& =\left(T_{2}^{\mathrm{T}} T_{1}^{\mathrm{T}}+T_{2}^{\mathrm{T}} T_{1}\right)+\left(T_{2} T_{1}+T_{2} T_{1}^{\mathrm{T}}\right) \\
& =\left(T_{2}^{\mathrm{T}} T_{1}^{\mathrm{T}}+T_{2}^{\mathrm{T}} T_{1}\right)+\left(T_{2}^{\mathrm{T}} T_{1}^{\mathrm{T}}+T_{2}^{\mathrm{T}} T_{1}\right)^{\mathrm{T}}
\end{aligned}
$$

This shows that the product is a sum of a matrix and its transpose and is therefore symmetric.

