>> a=[1 3 0 3] a = 1 3 0 3 >> A1=[-1 -1 -1 1; 0 -4 2 -8; 2 0 3 -1] A1 = -1 -1 -1 1 0 -4 2 -8 2 0 3 -1 > A =[ a;A1] A = 1 3 0 3 -1 -1 -1 1 0 -4 2 -8 2 0 3 -1 >> I4 = eye(4) I4 = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 >> e1=I4(1,1:4) e1 = 1 0 0 0 >> e2=I4(2,1:4) e2 = 0 1 0 0 >> e3=I4(3,1:4) e3 = 0 0 1 0 >> e4=I4(4,1:4) e4 = 0 0 0 1 >> R41_2=[e1;e2;e3;e4-2*e1] R41_2 = 1 0 0 0 0 1 0 0 0 0 1 0 -2 0 0 1 >> A=R41_2*A A = 1 3 0 3 -1 -1 -1 1 0 -4 2 -8 0 -6 3 -7 R211 = 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 >> A=R211*A A = 1 3 0 3 0 2 -1 4 0 -4 2 -8 0 -6 3 -7 R322 = 1 0 0 0 0 1 0 0 0 2 1 0 0 0 0 1 >> A=R322*A A = 1 3 0 3 0 2 -1 4 0 0 0 0 0 -6 3 -7 >> Sw34=[e1;e2;e4;e3] Sw34 = 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 >> A=Sw34*A A = 1 3 0 3 0 2 -1 4 0 -6 3 -7 0 0 0 0 >> R323=[e1;e2;e3+3*e2;e4] R323 = 1 0 0 0 0 1 0 0 0 3 1 0 0 0 0 1 >> A=R323*A A = 1 3 0 3 0 2 -1 4 0 0 0 5 0 0 0 0 Forward phase is complete. A is in Row Echelon Form. Sometimes this is ref(A). Note: Scale(R1,c) was unnecessary for this phase. Now for the Backward Phase. >> Sc2d2=[e1;e2*0.5;e3;e4] Sc2d2 = 1.0000 0 0 0 0 0.5000 0 0 0 0 1.0000 0 0 0 0 1.0000 >> A=Sc2d2*A A = 1.0000 3.0000 0 3.0000 0 1.0000 -0.5000 2.0000 0 0 0 5.0000 0 0 0 0 >> R12_3=[e1-3*e2;e2;e3;e4] R12_3 = 1 -3 0 0 0 1 0 0 0 0 1 0 0 0 0 1 >> A=R12_3*A A = 1.0000 0 1.5000 -3.0000 0 1.0000 -0.5000 2.0000 0 0 0 5.0000 0 0 0 0 Sc3d5 = 1.0000 0 0 0 0 1.0000 0 0 0 0 0.2000 0 0 0 0 1.0000 >> A=Sc3d5*A A = 1.0000 0 1.5000 -3.0000 0 1.0000 -0.5000 2.0000 0 0 0 1.0000 0 0 0 0 NOTE: Here I named the elementary matrix incorrectly. >> R133=[e1+3*e3;e2;e3;e4] R133 = 1 0 3 0 0 1 0 0 0 0 1 0 0 0 0 1 >> A=R133*A A = 1.0000 0 1.5000 0 0 1.0000 -0.5000 2.0000 0 0 0 1.0000 0 0 0 0 >> R23_2=[e1;e2-2*e3;e3;e4] R23_2 = 1 0 0 0 0 1 -2 0 0 0 1 0 0 0 0 1 >> A=R23_2*A A = 1.0000 0 1.5000 0 0 1.0000 -0.5000 0 0 0 0 1.0000 0 0 0 0 A is in reduced row echelon form the backward phase is complete.