NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:

COURSE:

TITLE:

DESCRIPTION

TEXTS:
促

CREDITS:
PREREQUISITES:
CUNY proficiency in mathematics.
Prepared by:
Prof. H. Carley
Prof. L. Ghezzi
Prof. M. Munn
Fall 2010
A. Testing Guidelines:

The following exams should be scheduled:
i. A one-session exam at the end of the First Quarter
ii. A one-session exam at the end of the Second Quarter
iii. A one-session exam at the end of the Third Quarter
iv. A one-session Final Examination
B. A scientific calculator with trigonometric functions is required.

Course Intended Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods
1. Simplify exponents and use scientific notation.	Classroom activities and discussion, homework exams
2. Combine and factor polynomials.	Classroom activities and discussion, homework, exams.
3. Combine and simplify rational and radical expressions.	Classroom activities and discussion, homework, exams.
4. solve - Linear and quadratic equations. - Systems of linear equations in two variables. - Equations involving rational and radical expressions.	Classroom activities and discussion, homework, exams.
5. - Identify lines and angles. - Apply theorems and solve problems associated with parallel and perpendicular lines. - Apply the SAS, SSS, ASA and AAS Theorems to congruent triangles. - Apply the AA Theorem to similar triangles. - Solve problems related to a parallelogram. - Apply the Pythagorean Theorem. - Solve special right triangles.	Classroom activities and discussion, homework, exams.

General Education Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods		
1. Understand and employ both quantitative and qualitative analysis to solve problems.	Classroom activities and homework, exams.	discussion,	
2. Employ scientific reasoning and logical thinking.	Classroom activities homework, exams.	and discussion,	
3. Communicate effectively using written and oral means.	Classroom activities and homework, exams.	discussion,	
4. Use creativity to solve problems.	Classroom activities and homework, exams.	discussion,	

Mathematics Department Policy on Lateness/Absence

A student may be absent during the semester without penalty for 10% of the class instructional sessions. Therefore,

If the class meets: The allowable absence is:
1 time per week 2 absences per semester
2 times per week 3 absences per semester
Students who have been excessively absent and failed the course at the end of the semester will receive either

- the WU grade if they have attended the course at least once. This includes students who stop attending without officially withdrawing from the course.
- the WN grade if they have never attended the course.

In credit bearing courses, the WU and WN grades count as an F in the computation of the GPA. While WU and WN grades in non-credit developmental courses do not count in the GPA, the WU grade does count toward the limit of 2 attempts for a developmental course.

The official Mathematics Department policy is that two latenesses (this includes arriving late or leaving early) is equivalent to one absence.

Every withdrawal (official or unofficial) can affect a student's financial aid status, because withdrawal from a course will change the number of credits or equated credits that are counted toward financial aid.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

MAT 1175 Fundamentals of Mathematics
Text: Miller, O' Neill \& Hyde, Intermediate Algebra, custom edition (2011), McGraw Hill
Africk, H. (1997). Elementary College Geometry, Thomson Learning.
Note: The problems in the algebra text followed by a (G) require some basic geometry (area, perimeter, circumference, Pythagorean Theorem)

Session	Section	Homework
1	Algebra 4.1 (Ex. 1-3) Properties of Integer Exponents and Scientific Notation (pp. 314316)	TEXT: InTERMEDIATE ALGEBRA by Miller, o' neill \& Hyde p. 321: 11-17 odd, 25-31 odd, 33-55 odd, 61, 63
2	Algebra 4.1 (Ex. 4-7) Properties of Integer Exponents and Scientific Notation (pp. 317320)	Text: I ntermediate Algebra by Miller, o' neill \& Hyde p. 321: 65, 69-83 odd, 85-90 all, 91-103 odd
3	Algebra 2.1 (Ex. 1-6, 8, 9) Linear Equations in Two Variables (pp. 128-137) 2.2 (Ex. 2-7) Slope of a Line and Rate of Change (pp. 145-150) 2.3 (Ex. 1-3) Equations of a Line (pp. 156-159)	Text: Intermediate Algebra by Miller, o' neill \& Hyde p. 140: 15-29 odd p. 153: 13-23 odd, 39-51 odd p. 165: 7-17 odd, 25-29 odd, 33-37 odd
4	Algebra 2.3 (Ex. 4-8) Equations of a Line (pp. 159-163)	Text: I ntermediate Algebra by Miller, o' neill \& Hyde p. 167: 39-73 odd
5	Algebra 3.1 (Ex. 1-4) Solving Systems of Linear Equations by the Graphing Method (pp. 234-238)	Text: I ntermediate Algebra by Miller, o' neill \& Hyde p. 239: 3-7 odd, 15-23 odd, 27, 31
6	Algebra 3.2 (Ex. 1-3) Solving Systems of Linear Equations by the Substitution Method (pp. 243-246) 3.3 (Ex. 1, 2, 5) Solving Systems of Linear Equations by the Addition Method (pp. 249-253) 3.4 (Ex. 1, 2, 4, 5) Applications of Systems of Linear Equations in Two Variables (Optional) (pp. 256-261)	Text: Intermediate Algebra by Miller, o' neill \& Hyde p. 248: 9-21 odd, 25, 35-37 all p. 254: 5-11 odd, 15, 19, 23, 27, 29, 35 p. 262: (Optional) 5, 9, 11, 17, 23, 29
7	Algebra 4.2 (Ex. 1-5, 7(optional), 8 -- only examples with integer coefficients) Adding \& Subtracting Polynomials (pp. 323-328) 4.3 (Ex. 1-5) Multiplication of Polynomials (pp. 334-337)	Text: I ntermediate Algebra by Miller, ó neill \& Hyde p. 330: 19, 21, 25-29 odd, 37-43 odd, 47, 49, 51-71 odd, 75 (G), 89 (G), 85 (optional), 95 (optional) p. 340: 7, 8, 13, 14, 17-25 odd, 31, 32, 37, 41-53 odd, 93 (G), 97-101 odd (G)

MAT 1175 Fundamentals of Mathematics
Text: Miller, O’ Neill \& Hyde, Intermediate Algebra, custom edition (2011), Mc Graw Hill Africk, H. (1997). Elementary College Geometry, Thomson Learning.

8	Algebra 4.4 (Ex. 1-3) Division of Polynomials (pp. 343-347) 4.5 (Ex. 1-5) The Greatest Common Factor \& Factoring by Grouping (pp. 354-358)	Text: I ntermediate Algebra by Miller, o' neill \& Hyde p. 351: 9-17 odd, 25, 27-30 all, 31-37 odd p. 360: 9-25 odd, 31-37 odd, 45-49 odd, 71 (G)
9	Algebra 4.6 (Ex. 1-9) Factoring Trinomials (pp. 362-371) 4.7 (Ex. 1-3) Factoring Binomials (pp. 376-377)	Text: Intermediate Algebra by Miller, o' neill \& Hyde p. 373: 9-35 odd, 55-58 all, 87, 88, 91, 93, 94, 95 p. 383: 11-17 all, 59, 60, 95 (G), 96 (G)
10	Algebra 4.8 (Ex. 1-3, 7, 8) Solving Equations by Using the Zero Product Rule (pp. 388-393)	Text: Intermediate Algebra by Miller, ó neill \& Hyde p. 397: 17-20 all, 25-35 odd, 42, 43, 45, 63 (G), 65 (G), 67 $\text { (G), } 72 \text { (G), } 75 \text { (G) }$
11	First Examination	
12	Algebra 5.1 (Ex. 3, 4, 6) Rational Expression (pp. 416-422) 5.2 (Ex. 1-3) Multiplication of Rational Expression (pp. 426-428) 5.3 (Ex. 1-9) Addition \& Subtraction of Rational Expressions (pp. 431-438)	Text: I ntermediate Algebra by Miller, o' neill \& Hyde p. 424: 31-39 odd, 43, 48, 65-73 odd p. 429: 11-21 odd, 23-31 odd p. 438: 7-11 odd, 33-45 odd, 49-57 odd, 79 (G),81 (G)
13	Algebra 5.5 (Ex. 1-5) Solving Rational Equations (pp. 449-454)	Text: I ntermediate Algebra by Miller, óneill \& Hyde p. 455: 9-19 odd, 29-37 odd
14	Algebra 6.1 (Ex. 1-3) Definition of an nth Root (pp. 492-494) 6.3 (Ex. 1, 3-6 -- only examples with square roots) Simplifying Radical Expressions (pp. 510-514)	Text: Intermediate Algebra by Miller, óneill \& Hyde $\begin{aligned} & \text { p. 500: } 7-15 \text { odd } \\ & \text { p. } 515: 9,13,17,19,21,25,33,35,37,45,47,49,53,55 \text {, } \\ & 61,65,67,69,71,77(\mathrm{G}), 79(\mathrm{G}) \end{aligned}$
15	Algebra 6.4 (Ex. 1-4 -- only examples with square roots) Addition and Subtraction of Radicals (pp. 517-519) 6.5 (Ex. 1-7 -- only examples with square roots) Multiplication of Radicals (pp. 522-526)	$\begin{aligned} & \text { Text: I ntermediate Algebra } \\ & \text { By Miler, o' neill \& Hyde } \\ & \text { p. } 520: 15,19,23,35,37,39,41,45,51,55,57,79 \text { (G), } 81 \text { (G) } \\ & \text { p. } 528: 11,17,19,21,23,29,31,35,37,41,45,47,51,55 \text {, } \\ & 57,61,63,77,85(\mathrm{G}), 87(\mathrm{G}) \end{aligned}$
16	Algebra 6.6 (Ex. 1, 3, 5, 7-9 -- only examples with square roots) Division of Radicals and Rationalization (pp. 531-537)	Text: Intermediate Algebra by Miller, ó neill \& Hyde p. 538: $11,13,17,31-39$ odd, $53,63,65,67,75-81$ odd

MAT 1175 Fundamentals of Mathematics
Text: Miller, O' Neill \& Hyde, Intermediate Algebra, custom edition (2011), Mc Graw Hill Africk, H. (1997). Elementary College Geometry, Thomson Learning.

17	Algebra 6.7 (Ex. 1, 4) Solving Radical Equations (pp. 540-543)	Text: I ntermediate Algebra by Miller, ó neill \& Hyde p. 547: 11-16 all, 21, 23, 37-42 all, 63, 64
18	Algebra 7.1 (Ex. 1-3) Square Root Property (pp. 574-575) 7.2 (Ex. 1, 3, 8) Quadratic Formula (pp. 583-592)	Text: Intermediate Algebra by Miller, óneill \& Hyde p. 580: $2-5$ all, $8,9,11,15$ p. 595: $9,12,15-20$ all, $23,25,41$ (G), 43 (G), 77
19	Midterm Examination	
20	Geometry 1.1 Lines: pp. 1-6: Ex. A-D 7.5 Circumference of a Circle: pp. 331-335: Ex. A, D 7.6 Area of a Circle: pp. 342: Ex. A 1.2 Angles pp. 8-13: Ex. A-C 1.3 Angle Classifications: pp.17-24: Ex. A-F	Text: Elementary College Geometry by Henry Africk Page 7: 1-5 odd Page 339: 1-5 odd, 19-23 odd, Page 348: 1, 3, 7, 9 Page 14: 1-27 odd Page 26: 1-25 odd
21	Geometry 1.4 Parallel Lines: pp. 30-38: Ex. A-E 6.1 The Area of a Rectangle and Square: pp. 244-247: Ex. A-B, D 1.5 Triangles: pp. 46-54: Ex. A-F 6.3 The Area of a Triangle: pp. 260-264: Ex. A	Text: Elementary College Geometry by Henry Africk Page 42: 1-25 odd Page 249: 1-5 odd, 15, 17 Page 55: 1-25 odd Page 265: 1, 3, 7, 21, 23
22	Geometry 2.1 The Congruence Statement: pp. 67-70: Ex. A-C 2.2 The SAS Theorem: pp. 73-78: Ex. A-C	Text: Elementary College Geometry by Henry Africk Page 71: 1-9 odd Page 81: 1-23 odd
23	Geometry 2.3 The ASA and AAS Theorem: pp. 84-91: Ex. A-D 2.5 Isosceles Triangles: pp.103-109: Ex. A-D 2.6 The SSS Theorem: pp. 113-115: Ex. A, B	Text: Elementary College Geometry by Henry Africk Page 93: 1-21 odd Page 111: 1-13 odd Page 118: 1-7 odd
24	Geometry 3.1 Parallelograms: pp. 130-138: Ex. A-G 6.2 The Area of a Parallelogram: pp. 253-257: Ex. A, D, E	Text: Elementary College Geometry by Henry Africk Page 139: 1-17 odd Page 258: 1, 9, 11, 13

MAT 1175 Fundamentals of Mathematics
Text: Miller, O' Neill \& Hyde, Intermediate Algebra, custom edition (2011), Mc Graw Hill Africk, H. (1997). Elementary College Geometry, Thomson Learning.

25	Geometry 4.1 Proportions: pp. 157-160: Ex. A, B 4.2 Similar Triangles: pp. 162-169: Ex. A-H	Text: Elementary College Geometry by Henry Africk Page 161: 1-11 odd Page 173: 1-21 odd
26	Geometry 4.4 Pythagorean Theorem: pp. 182-186: Ex. A-D 6.1 The Area of a Rectangle and Square: pp. 244-247: Ex. C 6.2 The Area of a Parallelogram: pp. 253-257: Ex. B 6.3 The Area of a Triangle: pp. 260-264: Ex. C 4.5 Special Right Triangles: pp. 197-203: Ex. A-D 6.3 The Area of a Triangle: pp. 260-264: Ex. D	Text: Elementary College Geometry by Henry Africk Page 192: 1-15 odd Page 249: 7, 9 Page 258: 3 Page 265: 9-13 odd Page 207: 1-19 odd Page 249: 11, 13 Page 258: 7 Page 265: 15, 17
27	Third Examination	
28	Geometry 5.1 The Trigonometric Functions: pp. 215-222: Ex. A-G 5.2 Solution of Right Triangles: pp. 225-230: Ex. A-G 6.2 The Area of a Parallelogram: pp. 253-257: Ex. C 6.3 The Area of a Triangle: pp. 260-264: Ex. B	Text: Elementary College Geometry by Henry Africk Page 223: 1-19 odd Page 234: 11-41odd Page 258: 5, Page 265: 5, 19 Page 242: 1-5 odd
29	Review	
30	Final Examination	

