Find the derivatives of the following functions:

1. (5 points)
$$f(t) = \sin(t^2)$$

Solution:

$$f'(t) = \cos(t^2) \cdot (2t) = 2t \cos(t^2)$$

2. (5 points)
$$g(x) = \sqrt{x^3 - \tan x}$$

Solution:

$$g'(x) = \frac{1}{2\sqrt{x^3 - \tan x}} (3x^2 - \sec^2 x) = \frac{3x^2 - \sec^2 x}{2\sqrt{x^3 - \tan x}}$$

3. (5 points)
$$y = \cos^2(x)$$

Solution:

$$\frac{dy}{dx} = 2\cos x(-\sin x) = -2\sin x\cos x$$

4. (5 points) Shown below is the graph of $y = \cos^2(x)$:

Sketch the tangent line to the curve at the point $\left(\frac{\pi}{4}, \frac{1}{2}\right)$, and then find the equation of that tangent line.

Hint: Use your solution to #3 to find the slope, using the fact that $\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

Solution:

$$m = \frac{dy}{dx} = -2\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) = -2\cdot\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2} = -\frac{2}{2} = -1$$

$$y = \frac{1}{2} - 1\left(x - \frac{\pi}{4}\right)$$