For each of the following, find the derivative of the given function. Show all steps, and organize your written work:

1. $g(x) = \sqrt{x} \sin x$

$$g'(x) =$$

2. $f(x) = xe^x$

$$f'(x) =$$

3. $h(x) = x^2 e^x$

$$h'(x) =$$

4. $g(x) = \sin x \cos x$

$$g'(x) =$$

5.
$$y = \frac{e^x}{x}$$

 $\frac{dy}{dx} =$
6. $y = \frac{x}{e^x}$
 $\frac{dy}{dx} =$

$$ax$$
 e^x

$$y = \frac{1}{x^2}$$
$$\frac{dy}{dx} = \frac{1}{x^2}$$

7.

8.
$$y = \frac{e^x}{1+x^2}$$
$$\frac{dy}{dx} =$$

9. Shown below is the graph of $y = \frac{1}{1+x^2}$

(This function is called "the witch of Agnesi": https://en.wikipedia.org/wiki/Witch_of_Agnesi)

- (a) Sketch the tangent line to the curve at the point $\left(1, \frac{1}{2}\right)$
- (b) Find the derivative of the function:

$$\frac{d}{dx}\left(\frac{1}{1+x^2}\right) =$$

(c) Find the equation of the tangent line for the curve at $\left(1, \frac{1}{2}\right)$:

10. $A(t) = \cos(t^2)$

$$\frac{dA}{dt} =$$

11. $s(t) = \cos^2(t)$

$$\frac{ds}{dt} =$$

12. $g(x) = \sqrt{x^3 + x^2 + x + e^x}$

$$g'(x) =$$

13. (5 points) $y = (\sin x + \cos x + \tan x)^7$

$$\frac{dy}{dx} =$$

14. $F(x) = \cos^4(6x)$

$$F'(x) =$$

15. $y = x \sin(4x)$

$$\frac{dy}{dx} =$$

16. $y = \sqrt{x} \tan(3x)$

$$\frac{dy}{dx} =$$

17. $y = xe^{2x}$

$$\frac{dy}{dx} =$$

18. $y = \ln x + \frac{1}{x}$ $\frac{dy}{dx} =$

19.
$$f(x) = x \ln x$$

$$f'(x) =$$

20. $g(x) = \ln(x^2)$

$$g'(x) =$$