\qquad

Question:	1	2	Total
Points:	6	4	10
Score:			

1. (6 points) Factor the following quadratic polynomials.

You can use the $a c$-method (in these cases, the " c-method", since $a=1$ in all these), but you can just write down the factorization (i.e., you don't need to go through the steps of "splitting the linear term" and factoring by grouping.)
Extra credit: check your solutions by multiplying out your factorization (i.e., use "FOIL").
a. $x^{2}+14 x+49=$

Solution: Two numbers which multiply to $a c=49$ and which sum to $b=14$ are 7 and 7 . Hence:

$$
x^{2}+14 x+49=(x+7)(x+7)=(x+7)^{2}
$$

Check: $(x+7)(x+7)=x^{2}+7 x+7 x+49=x^{2}+14 x+49$
b.

$$
y^{2}-5 y+4=
$$

Solution: Two numbers which multiply to $a c=4$ and which sum to $b=-5$ are -4 and -1 . Hence:

$$
y^{2}-5 y+4=(y-4)(y-1)
$$

Check: $(y-4)(y-1)=y^{2}-y-4 y+4=y^{2}-5 y+4$
c.

$$
x^{2}+14 x-32=
$$

Solution: Two numbers which multiply to $a c=-32$ and which sum to $b=14$ are 16 and -2 . Hence:

$$
x^{2}+14 x-32=(x+16)(x-2)
$$

Check: $(x+16)(x-2)=x^{2}-2 x+16 x-32=x^{2}+14 x-32$
2. (4 points) Factor the following using the $a c$-method. For this exercise, show the steps of splitting the linear term and factoring by grouping:

$$
3 x^{2}+14 x+15=
$$

Solution: Since $a=3, b=14, c=15$, we need to find two factors of $a c=3(15)=45$ which sum to $b=14$. Two such numbers are 9 and 5 . We use these to "split the linear term" $14 x$ and then factor by grouping:

$$
3 x^{2}+14 x+15=3 x^{2}+9 x+5 x+15=3 x(x+3)+5(x+3)=(x+3)(3 x+5)
$$

We can check by FOIL: $(3 x+5)(x+3)=3 x^{2}+9 x+5 x+15=3 x^{2}+14 x+15$

