\qquad

> In order to receive full credit, you must show all your work and simplify your answers.

1. (10 points) Algebraically find the vertex, y-intercept, and x-intercept(s) for the graph of the quadratic function

$$
y=x^{2}-6 x+8
$$

and then sketch the graph.
(a) y-intercept (i.e., find value of y when $x=0$):

Solution:

$y=8$ when $x=0$ so the y-intercept is $(0,8)$
(b) x-intercepts (i.e., find value(s) of x for when $y=0$):

Solution:

Since $x^{2}-6 x+8=(x-2)(x-4)$, the solutions of $x^{2}-6 x+8=0$ occur for $x-2=0$ and $x-4=0$, i.e., $x=2$ and $x=4$. Thus, the x-intercepts of the graph are the points $(2,0)$ and $(4,0)$.
(c) Find the vertex of $y=x^{2}-6 x+8$ by either of two methods:
(i) put the function in vertex form : $y=(x-h)^{2}+k$
by completing the square (in which case the vertex is at (h, k)); or
(ii) use the vertex formula, which says that the x-coordinate of the vertex of $y=a x^{2}+b x+c$ is

$$
x=-\frac{b}{2 a}
$$

Solution:

(i) completing the square:
$y-8=x^{2}-6 x \Rightarrow y-8+9=x^{2}-6 x+9 \Rightarrow y=(x-3)^{2}-1$
So the vertex is at $(3,-1)$.
(ii) Since $a=1$ and $b=6$, the the x-coordinate of the vertex is

$$
x=-\frac{-6}{2(1)}=\frac{6}{2}=3
$$

and then the x-coordinate of the vertex is $y=3^{2}-6(-3)+8=9-18+8=-1$. Thus, the vertex is at $(3,-1)$.
(d) Sketch the graph of $y=x^{2}-6 x+9$. Label the vertex, y-intercept, and x-intercepts with their coordinates:

2. (10 points) Simplify the following complex fraction:
$\frac{\frac{1}{y}+\frac{5}{y^{2}}}{1-\frac{25}{y^{2}}}=$

Solution:

$$
\frac{\frac{1}{y}+\frac{5}{y^{2}}}{1-\frac{25}{y^{2}}}=\frac{\frac{y}{y} \cdot \frac{1}{y}+\frac{5}{y^{2}}}{\frac{y^{2}}{y^{2}}-\frac{25}{y^{2}}}=\frac{\frac{y+5}{y^{2}}}{\frac{y^{2}-25}{y^{2}}}=\frac{y+5}{y^{2}} \cdot \frac{y^{2}}{y^{2}-25}=\frac{y+5}{(y+5)(y-5)}=\frac{1}{y-5}
$$

3. Use the quadratic formula to solve the given quadratic equations. Simplify the solutions completely.
(a) (5 points) $-x^{2}+8 x+1=0$

Solution: Applying the quadratic formula with $a=-1, b=8, c=1$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-8 \pm \sqrt{8^{2}-4(-1)(1)}}{2(-1)}=\frac{-8 \pm \sqrt{64+4}}{-2}=\frac{-8 \pm \sqrt{68}}{-2}=\frac{-8 \pm 2 \sqrt{17}}{-2}=-4 \pm \sqrt{17}
$$

(b) (5 points) $x^{2}-2 x+2=0$
(Hint: this quadratic equations has two complex solutions; simplify the solutions into the form $a \pm b i$.)
Solution: Applying the quadratic formula with $a=1, b=-2, c=2$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)}=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm \sqrt{-4}}{2}=\frac{2}{2} \pm \frac{2 i}{2}=1 \pm i
$$

4. Perform the indicated operations on the complex numbers. Write the result in standard complex form, i.e., in the form $a+b i$. (Remember to use the definition of i to simplify: $i^{2}=-1$.)
(a) (5 points)

$$
(5+12 i)(5-2 i)=
$$

Solution: $(5+12 i)(5-2 i)=25+60 i-10 i-24 i^{2}=25+50 i+24=49+50 i$
(b) (5 points) Recall that for division of complex numbers, we use the complex conjugate of the denominator:

$$
\frac{3+2 i}{1-i}
$$

Solution:

$$
\frac{3+2 i}{1-i} \times \frac{1+i}{1+i}=\frac{3++3 i+2 i+2 i^{2}}{1+i-i-i^{2}}=\frac{3+5 i-2}{1+1}=\frac{1+5 i}{2}=\frac{1}{2}+\frac{5}{2} i
$$

