\qquad

Question:	1	2	3	Total
Points:	5	10	10	25
Score:				

1. (5 points) Suppose we are observing a melting ice cube. Assuming it maintains the shape of a cube as it melts, both its volume V and its edge length l are decreasing over time.

(a) Clearly $V=l^{3}$. Use the Chain Rule to express the rate of change of the volume V in terms of l and the rate of change of l :

Solution:

$$
\frac{d V}{d t}=3 l^{2} \cdot \frac{d l}{d t}
$$

(b) Suppose we estimate that the edge length l is decreasing at a constant rate of $2 \mathrm{~cm} / \mathrm{min}$. Find the rate of change of the volume when the edge length l is 5 cm . Include units in your calculation.

Solution: The given rate at which the edge length is decreasing is the value of $\frac{d l}{d t}$, so $\frac{d l}{d t}=-2 \mathrm{~cm} / \mathrm{min}$.
Then:

$$
\left.\frac{d V}{d t}\right|_{l=5 \mathrm{~cm}}=3 \cdot(5 \mathrm{~cm})^{2} \cdot(-2 \mathrm{~cm} / \mathrm{min})=-150 \mathrm{~cm}^{3} / \mathrm{min}
$$

2. (10 points) Recall that the "linearization" (or "linear approximation") $L(x)$ for a given function $f(x)$ at a point $x=x_{0}$ is just the equation of the tangent line at $x=x_{0}$.
(a) Find the linear approximation $L(x)$ for $f(x)=e^{2 x}$ at $x_{0}=0$:

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=2 e^{2 x} \\
& f^{\prime}(0)=2 e^{0}=2 \\
& f(0)=e^{0}=1 \\
& L(x)=1+2(x-0)=2 x+1
\end{aligned}
$$

(b) Shown below is the graph of $f(x)=e^{2 x}$. Add the linear approximation (i.e., tangent line) at $x_{0}=0$ to the graph:

(c) Use the linear approximation from part (a) to estimate $e^{0.02}$ and $e^{0.2}$, i.e., calculate $L(0.01)$ and $L(0.01)$:

Solution:

$$
\begin{aligned}
& e^{0.02}=f(0.01) \approx L(0.01)=2(0.01)+1=1.02 \\
& e^{0.2}=f(0.1) \approx L(0.1)=2(0.1)+1=1.2
\end{aligned}
$$

3. (10 points) Consider the function $f(x)=x^{3}-3 x^{2}-9 x+4$
(a) The first derivatives of $f(x)$ is given below. Find the second derivative:

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
& f^{\prime \prime}(x)=6 x-6
\end{aligned}
$$

(b) Find the critical points and inflection points of f, i.e., solve for the values x such that $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)=0$: (Hint: Use the factored form of $f^{\prime}(x)$ given above to solve $f^{\prime}(x)=0$.)

Solution: Since $f^{\prime}(x)=3(x-3)(x+1)$, the critical points occur at $x=3$ and $x=-1$.
For the inflection point: $f^{\prime \prime}(x)=6 x-6=0 \Longrightarrow x=1$
(c) Sketch rough graphs of $y=f^{\prime}(x)$ and $y=f^{\prime \prime}(x)$. In particular, plot the x-intercepts of these graphs, using your results from (b).

Solution: $y=f^{\prime}(x)$ is a parabola with x-intercepts at $x=-1$ and $x=3$ $y=f^{\prime \prime}(x)=6 x-6$ is just a straight line with slope $m=6$ and x-intercept at $x=1$

(d) Use your graphs above to find the intervals on which:

Solution: We observe where the graphs of $y=f^{\prime}(x)$ and $y=f^{\prime \prime}(x)$ are above/below the x-axis:

$$
\begin{aligned}
& f^{\prime}(x)>0:(-\infty,-1) \cup(3, \infty) \\
& f^{\prime}(x)<0:(-1,3) \\
& f^{\prime \prime}(x)>0:(1, \infty) \\
& f^{\prime \prime}(x)<0:(-\infty, 1)
\end{aligned}
$$

(e) Use part (d) to write down the intervals on which the graph $y=f(x)$ is:

Solution:

- increasing concave up: $(3, \infty)$
- increasing concave down: $(-\infty,-1)$
- decreasing concave up: $(1,3)$
- decreasing concave down: $(-1,1)$
(f) Sketch the graph of $y=f(x)$. Label the critical points on the graph, and indicate whether each is a local maximum or a local minimum. Also label the y-intercept and the inflection point.
(Hint: since $f(-1)=9, f(1)=-7$, and $f(3)=-23$, the points $(-1,9),(1,7)$ and $(3,-23)$ are on the graph.)

