\qquad

Question:	1	2	3	4	5	Total
Points:	5	5	5	5	5	25
Score:						

1. (5 points) Suppose an oil tanker starts leaking oil, creating an expanding circular oil spill on the water.
(a) Draw a picture illustrating the situation, and label the radius of the oil spill with the variable $r(t)$:

Solution: Just draw a circle, with maybe an oil tanker at the center, and label the radius $r(t)$. This video of a similar related rates exercise includes a picture:

```
https://www.youtube.com/watch?app=desktop&v=nh56AppTg6U
```

(b) Express the surface area $A(t)$ of the oil spill as a function of its radius $r(t)$:

Solution: Area of a circle as a function of its radius: $A(t)=\pi r(t)^{2}$
(c) Clearly, if oil spill is expanding, both the surface area and the radius are increasing with time. Use the Chain Rule to express the rate of change of the surface area $A(t)$ in terms of the radius $r(t)$ and the rate of change of the radius:

Solution:

$$
\frac{d A}{d t}=2 \pi \cdot r(t) \cdot \frac{d r}{d t}
$$

(d) Now answer the questions in Problem 1 of the WebWork set "Exam 3," showing all your calculations below. Include units in your calculations:

Solution: WebWork randomizes the numbers in a given exercise. Here is an example:
"The radius of a circular oil slick expands at a rate of $4 \mathrm{~m} / \mathrm{min}$."
The rate at which the radius is increasing is the value of $\frac{d r}{d t}$. So in this case: $\frac{d r}{d t}=4 \mathrm{~m} / \mathrm{min}$.
"How fast is the area of the oil slick increasing when the radius is 27 m ?"
We need to calculate $\frac{d A}{d t}$ when $r=27$; we substitute into the "differential equation" we found in (b):

$$
\left.\frac{d A}{d t}\right|_{r=27 m}=2 \pi \cdot 27(m) \cdot 4(\mathrm{~m} / \mathrm{min})=216 \pi \mathrm{~m}^{2} / \mathrm{min}
$$

"If the radius is 0 at time $t=0$, how fast is the area increasing after 2 mins?" We need to find the radius after 2 mins. Since $r(0)=0$, and since the radius increases at $4 \mathrm{~m} / \mathrm{min}, r(2)=0 \mathrm{~m}+2(\mathrm{mins}) \cdot 4(\mathrm{~m} / \mathrm{min})=8 \mathrm{~m}$, i.e., the radius is $8 m$ after 2 mins. We substitute this value of r into the equation:

$$
\left.\frac{d A}{d t}\right|_{r=8 m}=2 \pi \cdot 8(m) \cdot 4(\mathrm{~m} / \mathrm{min})=64 \pi \mathrm{~m}^{2} / \mathrm{min}
$$

2. (5 points) Recall that the "linearization" (or "(local) linear approximation") $L(x)$ for a given function $f(x)$ at a point $x=x_{0}$ is just the equation of the tangent line for the graph $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$.
(a) Look at Problem 2 in the WebWork set "Exam 3." As asked in part (a) of the WebWork exercise, find the linear approximation $L(x)$ for the given function $f(x)$ at the given value of x_{0}, via writing down the following:

Solution: Again, every WebWork exercise will have different numbers. Suppose $f(x)=\sqrt{5+x}$ and $x_{0}=4$. Then:

$$
\begin{aligned}
f\left(x_{0}\right) & =f(4)=\sqrt{9}=3 \\
f^{\prime}(x) & =\frac{1}{2 \sqrt{x+9}} \\
f^{\prime}(0) & =\frac{1}{2 \sqrt{9}}=\frac{1}{6} \\
L(x) & =3+\frac{1}{6}(x-4)
\end{aligned}
$$

(b) Use the linear approximation from part (a) to estimate the values of $f(x)$ asked for in parts (b) and (c) of the WebWork exercise. Show your calculations here (you should not need a calculator for this!):

Solution: Suppose we are asked to use the linear approximation to approximate $\sqrt{8.9}$ and $\sqrt{9.1}$. In order to use our linear approximation to $f(x)=\sqrt{5+x}$, we have to express these values in terms of $f(x)$: note that $\sqrt{9.1}=\sqrt{5+4.1}=f(4.1)$. So we calculate $L(4.1)$:

$$
\sqrt{9.1}=\sqrt{5+4.1}=f(4.1) \approx L(4.1)=3+\frac{1}{6}(4.1-4)=3+\frac{1}{6}(0.1)=3+\frac{1}{60}
$$

Similarly:

$$
\sqrt{8.9}=\sqrt{5+3.9}=f(3.9) \approx L(3.9)=3+\frac{1}{6}(3.9-4)=3+\frac{1}{6}(-0.1)=3-\frac{1}{60}
$$

(c) Sketch the graph of $f(x)$, and sketch the linear approximation (i.e., the tangent line) at x_{0} which you found in (a):

(d) Are the estimated values in part (b) overestimates or underestimates for the exact values for $f(x)$, i.e., is $L(x)>f(x)$ or is $L(x)<f(x)$? Give a brief explanation in terms of the graphs of $f(x)$ and $L(x)$ you sketched above.

Solution: We can see from the graph that the linear approximation (i.e., the tangent line) clearly sits above the curve-in other words, the y -values on the line are greater than the y -values on the curve (for any given value of x$): L(x)>f(x)$! Thus, the estimated values are overestimates.
3. (5 points) Read Problem 3 of the WebWork set, which describes a situation where a landscape architect wants to enclose a rectangular garden on one side by a brick wall and on the other three sides by metal fencing.
(a) Using the variables and costs per foot for a brick wall and for metal fencing given in your WebWork, write down an expression for the total cost C in terms of x and y. Also draw a sketch of the garden, labeling it with the variables.

Solution:

Here is a sample WebWork exercise: "A landscape architect wished to enclose a rectangular garden on one side by a brick wall costing $\$ 50 / \mathrm{ft}$ and on the other three sides by a metal fence costing $\$ 20 / \mathrm{ft}$. If the area of the garden is 122 square feet, find the dimensions of the garden that minimize the cost."
With these numbers, and if we let $x=$ length of brick wall side and $y=$ length of adjacent side, then the total cost is:

$$
C(x, y)=50 x+20 y+20 y+20 x=70 x+40 y
$$

(Obviously the brick wall will cost $50 x$; the other 3 terms represent the cost of the 2 adjacent metal-fence sides of length y, and the metal-fence side opposite the brick side (so also of length x). Note that we have written the cost C here as a function of two variables, x and y.)
(b) As asked in the WebWork exercise, solve for the dimensions of the garden that minimize the cost C.

Hint: use the "constraint" of the area of the garden given in the WebWork exercise to solve for y in terms of x, and substitute that into C in order to express the cost C as a function of only x. Then find the minimum of $C(x)$ by finding its critical point(s).

Solution: The constraint here is $x y=122$, and so $y=\frac{122}{x}$. Substituting this for y in $C(x, y)$, we get cost as a function of x :

$$
C(x)=70 x+40\left(\frac{122}{x}\right)=70 x+\frac{4880}{x}
$$

Then:

$$
C^{\prime}(x)=70-\frac{488}{x^{2}}=\frac{70 x^{2}-4880}{x^{2}}
$$

So the critical points of $C(x)$ occur when $70 x^{2}-4880=0$, i.e., for $x^{2}=\frac{4880}{70}$. Hence, the maximal area occurs for $x=\sqrt{\frac{4880}{70}} \approx 8.35$ (feet)
To solve for the corresponding value of y, we use $y=\frac{122}{x}$, and so $y \approx \frac{122}{8.35}=14.61$ (feet)

Entered	Answer Preview	Result
8.34951	$\sqrt{\frac{4880}{70}}$	correct
14.6116	$\frac{122}{\sqrt{\frac{4880}{70}}}$	correct

All of the answers above are correct.

> A landscape architect wished to enclose a rectangular garden on one side by a brick wall costing $\$ 50 / \mathrm{ft}$ and on the other three sides by a metal fence costing $\$ 20 / \mathrm{ft}$. If the area of the garden is 122 square feet, find the dimensions of the garden that minimize the cost. Length of side with bricks $x=\sqrt{\frac{4880}{70}}$ Length of adjacent side $y=\frac{122}{\sqrt{\frac{4880}{70}}}$
4. (5 points) Find the derivative of $f(x)=2 x^{2}-7 x+1$ using the limit definition of the derivative, according to the following steps:
(a) Write out and simplify $f(x+h)$:

Solution: $f(x+h)=2(x+h)^{2}-7(x+h)+1=2\left(x^{2}+2 x h+h^{2}\right)-7 x-7 h+1=2 x^{2}+4 x h+2 h^{2}-7 x-7 h+1$
(b) Write out and simplify $f(x+h)-f(x)$:

Solution: $f(x+h)-f(x)=\left(2 x^{2}+4 x h+2 h^{2}-7 x-7 h+1\right)-\left(2 x^{2}-7 x+1\right)=4 x h+2 h^{2}-7 h$
(c) Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$:

Solution: $\frac{f(x+h)-f(x)}{h}=\frac{h(4 x+2 h-7)}{h}=4 x+2 h-7$
(d) Finally, find $f^{\prime}(x)$ by evaluating the limit:

Solution: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}(4 x+2 h-7)=4 x-7$
5. (5 points) Consider the function $f(x)=\frac{1}{3} x^{3}-3 x^{2}+8 x+4$
(a) Find the first and second derivatives of $f(x)$:

Solution: $f^{\prime}(x)=x^{2}-6 x+8, f^{\prime \prime}(x)=2 x-6$
(b) Find the critical points of f, i.e., solve for the values x such that $f^{\prime}(x)=0$:

Solution: $f^{\prime}(x)=x^{2}-6 x+8=(x-4)(x-2)=0 \Longrightarrow x=2,4$
(c) For what values of x is $f^{\prime}(x)>0$ and for what values of x is $f^{\prime}(x)<0$? Show or explain how you solve for these intervals. What do these intervals represent in terms of the shape of the graph of $f(x)$?

Solution: Since $f^{\prime}(x)$ is a quadratic with a positive leading term with roots at $x=2$ and $x=4$, we can conclude that $f^{\prime}(x)>0$ on $(-\infty, 2) \cup(4, \infty)$, meaning the graph is increasing on these intervals. On the other hand $f^{\prime}(x)<0$ on $(2,4)$, and so the graph is decreasing on that interval.
It can help to draw a rough sketch of the graph, as I asked you to do on the in-class exercise.
(d) For what values of x is $f^{\prime \prime}(x)>0$ and for what values of x is $f^{\prime \prime}(x)<0$? Again, show or explain how you solve for these intervals, and explain what these intervals represent in terms of the shape of the graph of $f(x)$:

Solution: Since $f^{\prime \prime}(x)=2 x-6$, which is a linear function with positive slope and x-intercept at $x=3$, it is clear that $f^{\prime \prime}(x)>0$ for all x in $(3, \infty)$ (and so the graph is concave up there) while $f^{\prime \prime}(x)<0$ on $(-\infty, 3)$, where the graph is concave down. Hence, $x=3$ is an inflection point.
(e) Sketch the graph of $y=f(x)$. Label the critical point(s) on the graph, and indicate whether each is a local maximum or a local minimum. Also label the y-intercept and any inflection points.

