\qquad

1. Suppose an object is launched straight up with an initial velocity of 50 meters per second, from an initial height of 2 meters. Then the height of the object after t seconds is given by the function:

$$
h(t)=-4.9 t^{2}+50 t+2
$$

(a) (4 points) Find the velocity function $v(t)$, i.e., find the derivative of height function:

$$
v(t)=\frac{d h}{d t}=
$$

Solution:

$$
v(t)=\frac{d h}{d t}=-9.8 t+50
$$

(b) (3 points) What is the velocity of the object after 1 second? What is its velocity after 10 seconds?

Solution:

$$
\begin{aligned}
& v(1)=-9.8(1)+50=40.8 \mathrm{~m} / \mathrm{s} \\
& v(10)=-9.8(10)+50=50-98=-48 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note that $v(1)$ is positive because the object is still rising at that time, while $v(10)$ is negative because the object is falling.
(c) (3 points) Solve for the time when the velocity is zero (i.e., solve the equation $v(t)=0$ for t). What does this moment in time represent, in terms of the trajectory of the object?

Solution:

$$
v(t)=-9.8 t+50=0 \Longrightarrow t=\frac{50}{-9.8} \approx 5.1 \mathrm{sec}
$$

This is the time when the object is momentarily still-when its trajectory switches from rising to falling. Thus, it's the time at which the object reaches maximum height.
2. Consider the functions:

$$
\begin{aligned}
f(x) & =x^{4} \\
g(x) & =\sin x
\end{aligned}
$$

(a) (2 points) Write down the derivatives of these two functions:

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3} \\
& g^{\prime}(x)=\cos x
\end{aligned}
$$

(b) (3 points) Compute the derivative of the product $h(x)=f(x) \cdot g(x)$ using the Product Rule:

Solution:

$$
h^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)=4 x^{3} \cdot \sin x+x^{4} \cdot \cos x
$$

(c) (5 points) Write down the composite functions $f \circ g$ and $g \circ f$, and then find their derivatives using the Chain Rule:

Solution:

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=(\sin x)^{4}=\sin ^{4} x \\
& (g \circ f)(x)=g(f(x))=\sin \left(x^{4}\right) \\
& (f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=4 \sin ^{3} x \cdot \cos x \\
& (g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)=\cos \left(x^{4}\right) \cdot\left(4 x^{3}\right)
\end{aligned}
$$

