\qquad

Consider the functions:

$$
\begin{aligned}
f(x) & =\sqrt{x} \\
g(x) & =x^{2}-5 x+1
\end{aligned}
$$

1. (4 points) Write down the derivatives of these two functions:

Solution:

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, g^{\prime}(x)=2 x-5
$$

2. (8 points) Compute the derivative of the product $h(x)=f(x) \cdot g(x)$ by two different methods:
(a) First simplify $h(x)=f(x) \cdot g(x)$ by distributing the \sqrt{x} term, and then compute $h^{\prime}(x)$ using the Power Rule:

Solution:

$$
\begin{aligned}
& h(x)=f(x) \cdot g(x)=\sqrt{x} \cdot\left(x^{2}-5 x+1\right)=x^{2} \sqrt{x}-5 x \sqrt{x}+\sqrt{x}=x^{5 / 2}-5 x^{3 / 2}+x^{1 / 2} \\
& h^{\prime}(x)=\frac{5}{2} x^{3 / 2}-\frac{15}{2} x^{1 / 2}+\frac{1}{2} x^{-1 / 2}=\frac{5}{2} x^{3 / 2}-\frac{15}{2} \sqrt{x}+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(b) Use the Product Rule to compute $h^{\prime}(x)$ directly:

Solution:

$$
\begin{aligned}
& h^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)=\frac{1}{2 \sqrt{x}} \cdot\left(x^{2}-5 x+1\right)+\sqrt{x} \cdot(2 x-5) \\
& =\frac{1}{2} x^{3 / 2}-\frac{5}{2} x^{1 / 2}+\frac{1}{2 \sqrt{x}}+2 x^{3 / 2}-5 \sqrt{x}=\frac{5}{2} x^{3 / 2}-\frac{15}{2} \sqrt{x}+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

3. (3 points) Write down the equation of the tangent line to the graph of $y=h(x)=f(x) \cdot g(x)$ at $x_{0}=4$:
(a) The slope of the tangent line at $x_{0}=4$ is:

Solution:

$$
m_{t a n}=h^{\prime}(4)=\frac{5}{2} \cdot 4^{3 / 2}-\frac{15}{2} \sqrt{4}+\frac{1}{2 \sqrt{4}}=\frac{5}{2} \cdot 2^{3}-\frac{30}{2}+\frac{1}{4}=20-15+\frac{1}{4}=5.25=\frac{21}{4}
$$

(b) The y-coordinate of the point on the graph of $y=h(x)$ for $x_{0}=4$ is:

Solution:

$$
y_{0}=h(4)=f(4) \cdot g(4)=\sqrt{4} \cdot\left(4^{2}-20+1\right)=2 \cdot(-3)=-6
$$

(c) Hence, the equation of the tangent line (in point-slope form) is:

Solution:

$$
y=-6+\frac{21}{5}(x-4)
$$

