Name: \qquad

Consider the function $f(x)=x^{2}+3 x+2$. Let's calculate $f^{\prime}(1)$ using the limit definition of the derivative:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

1. (1 point) What is $f(1)$? Show your calculation:

Solution: $f(1)=1^{2}+3(1)+2=1+3+2=6$
2. (3 points) Write down and simplify the difference quotient that appears in the definition of the derivative.
(Hint: substitute the given expression for $f(x)$ and the value of $f(1)$ you calculated; then combine the constant terms in the numerator and factor the resulting quadratic polynomial.)

Solution:

$$
\frac{\Delta f}{\Delta x}=\frac{f(x)-f(1)}{x-1}=\frac{\left(x^{2}+3 x+2\right)-6}{x-1}=\frac{x^{2}+3 x-4}{x-1}=\frac{(x+4)(x-1)}{x-1}=x+4
$$

3. (2 points) Use the simplified difference quotient to calculate $f^{\prime}(1)$:

Solution:

$$
f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1}(x+4)=1+4=5
$$

4. (2 points) Use the point-slope form to write down the equation of the tangent line passing through $(1, f(1))$:

Solution: The point on the graph is $(1,6)$ and the slope of the tangent line is $f^{\prime}(1)=5$. Hence, according to point-slope form $\left(y=y_{0}+m\left(x-x_{0}\right)\right)$, the equation of the tangent line is:

$$
y=6+5(x-1)
$$

5. (2 points) Shown below is the graph of $y=f(x)=x^{2}+3 x+2$. Label the point $(1, f(1))$ on the graph and sketch the tangent line to the curve passing through that point:

