Exam #3 (take-home) Due: Mon Dec 18, 2023

Name: _

Question:	1	2	3	4	5	6	Total
Points:	5	5	5	5	5	5	30
Score:							

In order to receive full credit, you must **show all your work**, and write out your solutions in a clear and organized manner. **Please work on this exam individually.** You can (and should) consult resources such as your class notes, the textbook, the Final Exam Review solutions, etc. in order to work through these exercises.

- 1. (5 points) For the following geometric series
 - state the values of a and r
 - determine whether the series converges or diverges, based on the value of r
 - if the series converges, compute what value it converges to

(a)

$$\sum_{n=1}^{\infty} \frac{3^n}{2^n}$$

Solution: Diverges as geometric series with r = 3/2 > 1

(b)

$$\sum_{n=1}^{\infty} \frac{2^n}{3^n}$$

Solution: Converges as geometric series with r = 2/3 < 1. The initial term is a = 2/3. Hence, the series converges to

$$\frac{a}{1-r} = \frac{2/3}{1-2/3} = \frac{2/3}{1/3} = 2$$

For #2-7, determine whether the infinite series converges or diverges. Justify your answer by using an appropriate test:

2. (5 points)

$$\sum_{n=1}^{\infty} \frac{7n^4}{10n^4 + n^2 + 1}$$

Solution: Diverges by the Divergence Test, since:

$$\lim_{n \to \infty} \frac{7n^4}{10n^4 + n^2 + 1} = \lim_{n \to \infty} \frac{7n^4}{n^4(10 + 1/n^2 + 1/n^4)} = \frac{7}{10} \neq 0$$

3. (5 points) Use the *p*-series test for the following. State the value of p in each case. (a)

$$\sum_{n=1}^{\infty} n^{-0.05}$$

Solution: Diverges since it's a *p*-series with
$$p = 0.05 < 1$$
:

$$\sum_{n=1}^{\infty} n^{-0.05} = \sum_{n=1}^{\infty} \frac{1}{n^{0.05}}$$

(b)

$$\sum_{n=1}^{\infty} \frac{1}{n^{1.05}}$$

Solution: Converges since it's a *p*-series with p = 1.05 > 1

$$\sum_{n=0}^{\infty} \frac{1}{9n^2 + 10}$$

Solution: Converges by Limit Comparison with $\sum \frac{1}{n^2}$ (which we know converges as a *p*-series with p = 2 > 1):

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{9n^2 + 10} \frac{n^2}{1} = \lim_{n \to \infty} \frac{n^2}{n^2(9 + 10/n^2)} \frac{n}{1} = \frac{1}{9}$$

(b)

$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{9n^2 + 10}}$$

Solution: Diverges by Limit Comparison with $\sum \frac{1}{n}$ (which we know diverges - the harmonic series):

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\sqrt{9n^2 + 10}} \frac{n}{1} = \lim_{n \to \infty} \frac{1}{\sqrt{n^2(9 + 10/n^2)}} \frac{n}{1} = \lim_{n \to \infty} \frac{1}{n\sqrt{(9 + 10/n^2)}} \frac{n}{1} = \frac{1}{\sqrt{9}} = \frac{1}{3}$$

5. (5 points) Use the Ratio Test:

$$\sum_{n=1}^{\infty} \frac{n^2}{7^n}$$

Solution: Converges by Ratio Test since
$$\rho = \frac{1}{7} < 1$$
:
 $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{7^{n+1}} \frac{7^n}{n^2} = \lim_{n \to \infty} \frac{1}{7} \cdot \frac{n^2 + 2n + 1}{n^2} = \frac{1}{7}$

- 6. (5 points) Recall that an alternating series may be absolutely convergent, conditionally convergent, or divergent.
 - (a) Explain why the following alternating series is absolutely convergent:

$$\sum_{n=1}^{\infty} (-1)^n n^{-5}$$

Solution: Absolutely convergent since $\sum \frac{1}{n^5}$ converges as *p*-series with p = 5 > 1

(b) Show that the following alternating series is conditionally convergent:

$$\sum_{n=0}^{\infty} (-1)^n \frac{n^3 + 1}{n^4 + 1}$$

(Hint: You can use the fact that $\frac{1^3+1}{1^4+1} > \frac{2^3+1}{2^4+1} > \frac{3^3+1}{3^4+1} > \dots$)

Solution: This alternating series is *not* absolutely convergent since $\sum \frac{n^3 + 1}{n^4 + 1}$ diverges by Limit Comparison with $\sum \frac{1}{n}$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^3 + 1}{n^4 + 1} \frac{n}{1} = \lim_{n \to \infty} \frac{n^4(1 + 1/n^3)}{n^4(1 + 1/n^4)} = 1$ On the other hand, $\sum_{n=0}^{\infty} (-1)^n \frac{n^3 + 1}{n^4 + 1}$ is convergent, by the Alternating Series Test: • as given in the hint, $\frac{1^3 + 1}{1^4 + 1} > \frac{2^3 + 1}{2^4 + 1} > \frac{3^3 + 1}{3^4 + 1} > \dots$ • and $\lim_{n \to \infty} \frac{n^3 + 1}{n^4 + 1} = 0$ Hence, the alternating series is *conditionally* convergent.