\qquad

| Question: | 1 | 2 | 3 | 4 | 5 | 6 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
| Score: | | | | | | | |

In order to receive full credit, you must show all your work, and write out your solutions in a clear and organized manner. Please work on this exam individually. You can (and should) consult resources such as your class notes, the textbook, the Final Exam Review solutions, etc. in order to work through these exercises.

1. (5 points) For the following geometric series

- state the values of a and r
- determine whether the series converges or diverges, based on the value of r
- if the series converges, compute what value it converges to
(a)

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}
$$

For \#2-7, determine whether the infinite series converges or diverges. Justify your answer by using an appropriate test:
2. (5 points)

$$
\sum_{n=1}^{\infty} \frac{7 n^{4}}{10 n^{4}+n^{2}+1}
$$

3. (5 points) Use the p-series test for the following. State the value of p in each case.
(a)

$$
\sum_{n=1}^{\infty} n^{-0.05}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1.05}}
$$

4. (5 points) Use the limit-comparison test for the following:
(a)

$$
\sum_{n=0}^{\infty} \frac{1}{9 n^{2}+10}
$$

(b)

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{9 n^{2}+10}}
$$

5. (5 points) Use the Ratio Test:

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{7^{n}}
$$

6. (5 points) Recall that an alternating series may be absolutely convergent, conditionally convergent, or divergent.
(a) Explain why the following alternating series is absolutely convergent:

$$
\sum_{n=1}^{\infty}(-1)^{n} n^{-5}
$$

(b) Show that the following alternating series is conditionally convergent:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{3}+1}{n^{4}+1}
$$

(Hint: You can use the fact that $\frac{1^{3}+1}{1^{4}+1}>\frac{2^{3}+1}{2^{4}+1}>\frac{3^{3}+1}{3^{4}+1}>\ldots$)

