
Convergence/Divergence of Infinite Series

Math 1575 - Fall 2023

Suman Ganguli

Section numbers refer to OpenStax Calculus, Volume 2 by E. Herman and G. Strang:

Section 5.2

Geometric Series

If the series is geometric, you can determine convergence or divergence based on the value of r:

• A geometric series converges if |r| < 1 (i.e., if −1 < r < 1), in which case

∞∑
n=0

arn = a+ ar + ar2 + ar3 + . . . =
a

1− r

∞∑
n=M

arn = arM + arM+1 + arM+2 + arM+3 + . . . =
arM

1− r

• A geometric series diverges if |r| ≥ 1 (i.e., r ≤ −1 or r ≥ 1).

Examples:

• OpenStax Example 5.9

• Final Exam Review, #8(b)

Section 5.3

Divergence (or nth-Term) Test

If the individual terms in the series don’t go to zero, then the series diverges:

• An infinite series
∑
an diverges if the nth term an does not go to zero, i.e., if

lim
n→∞

an 6= 0

• But the “converse” is not true, i.e., we have numerous examples of infinite series
∑
an

where limn→∞ an = 0 but
∑
an diverges.

Examples:

• OpenStax Example 5.13

• Final Exam Review, #8(a)
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Integral Test

If you can integrate the function that makes up the terms in the series, you can determine
convergence or divergence based on the improper integral:

• Suppose an = f(n), where f(x) is positive, decreasing, and continuous for x ≥M .

(i) If the improper integral

∫ ∞

M

f(x) dx converges, then the series

∞∑
n=M

an also converges.

(ii) If the improper integral

∫ ∞

M

f(x) dx diverges, then the series

∞∑
n=M

an also diverges.

Examples:

• OpenStax Example 5.14

p-series Test

By applying the Integral Test to

∞∑
n=M

1

np
, i.e., by integrating

∫ ∞

M

1

xp
dx, we showed that we

can determine the convergence or divergence of a p-series

∞∑
n=M

1

np
based on the value of p:

• If p > 1, then the series

∞∑
n=M

1

np
converges.

• If p ≤ 1, then the series

∞∑
n=M

1

np
diverges.

Examples:

• OpenStax Example 5.15
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Section 5.4

Limit Comparison Test

To test the convergence of an infinite series
∑

an, you can sometimes compare it to another

series
∑

bn (where you know about the convergence of the latter series) by looking at the limit

of an over bn as n goes to infinity:

L = lim
n→∞

an
bn

If L > 0, i.e., the limit is some finite number greater than 0, then
∑

an has the same conver-

gence/divergence behavior as
∑

bn, i.e.,

(i) If
∑

bn converges, then
∑

an also converges

(ii) If
∑

bn diverges, then
∑

an also diverges

(There are additional parts of the Limit Comparison Test given in the text, but focus on this
case.)

When does the Limit Comparison Test work on a given
∑

an, and what’s the

strategy for choosing the series
∑

bn?

• Start by thinking about what happens to the terms an as n gets big. In many instances,

an ≈ bn, where we already know about the convergence of
∑

bn by some other method.

• Many applications of the Limit Comparison Test occur when an is a ratio involving poly-
nomials and/or roots of polynomials. In such cases, a choice of bn = 1

np for a certain
p-value will often work.

• How do you figure out what value of p? Analyze what happens to an as n gets big by
looking at the leading terms in the polynomials involved.

Example:

• Given
∞∑

n=1

12n+ 5

7n5 − n2 + 10
, look at the leading terms to analyze what happens as n gets big:

an =
12n+ 5

7n5 − n2 + 10
≈ 12n

7n5
=

12

7n4

This indicates that we should use a Limit Comparison Test with bn = 1
n4 :

lim
n→∞

an
bn

= lim
n→∞

12n+ 5

7n5 − n2 + 10

n4

1
= lim

n→∞

n(12 + 5
n )

n5(7− 1
n3 + 10

n5 )

n4

1
= lim

n→∞

12 + 5
n

7− 1
n3 + 10

n5

=
12

7

So L = 12
7 > 0 and we know that

∞∑
n=1

1

n4
converges as a p-series with p > 1. Hence part (ii)

of the Limit-Comparison Theorem above applies, and so

∞∑
n=1

12n+ 5

7n5 − n2 + 10
also converges.

Examples:

• OpenStax Example 5.18

•
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Section 5.4

Absolute & Conditional Convergence of Alternating Series

Absolute Convergence: An infinite series
∑

an converges absolutely if
∑
|an| converges (i.e.,

the series converges if you make all the terms positive).

Conditional Convergence: An infinite series
∑

an converges conditionally if
∑

an converges

but it does not converge absolutely, i.e.,
∑
|an| diverges.

Absolute Convergence Implies Convergence

One way of checking whether an alternating series converges is to check whether the series when
you make all the terms positive converges. If so, the alternating series also converges:

• Theorem: If
∑
|an| converges, then

∑
an also converges.

• Example:

∞∑
n=1

(−1)n+1 1

np
converges absolutely for any p > 1 (since the p-series test tells

us that

∞∑
n=1

1

np
converges for p > 1 ). Hence

∞∑
n=1

(−1)n+1 1

np
converges for any p > 1.

Alternating Series Test (Theorem 2, p570)

In general it is easier to establish that an alternating series converges–you just need to check
that the individual terms (without the alternating signs) are decreasing and that they go to
zero:

• Alternating Series Test: An alternating series

∞∑
n=1

(−1)n+1an converges if

(i) a1 > a2 > a3 > . . .

(ii) lim
n→∞

an = 0

• Example:

∞∑
n=1

(−1)n+1 1

n
converges by the Alternating Series Test (since 1 > 1

2 >
1
3 > . . .

and lim
n→∞

1

n
= 0 ) but

∞∑
n=1

|(−1)n+1 1

n
| =

∑ 1

n
diverges (the harmonic series!). Hence,

∞∑
n=1

(−1)n+1 1

n
converges conditionally. In fact,

∞∑
n=1

(−1)n+1 1

np
converges conditionally for

any 0 < p ≤ 1.

Examples:

• OpenStax Example 5.18

• Final Exam Review, #9 (which also use the geometric series and limit-comparison, p-series,
and divergence tests!)
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Section 5.6: Ratio Test

Another way to test the convergence of an infinite series
∑

an is to look at the limit of the

ratio of successive terms as n goes to infinity:

ρ = lim
n→∞

|an+1

an
|

• If ρ < 1, then the series converges absolutely.

• If ρ > 1, then the series diverges.

• If ρ = 1, then the test is inconclusive.

The Ratio Test often works for series where an involves n as an exponent and/or n! (“n facto-
rial”):

Examples:

• Consider the series
∞∑

n=1

n

2n
. To use the Ratio Test, look at the limit:

lim
n→∞

|an+1

an
| = lim

n→∞

n+ 1

2n+1

2n

n
= lim

n→∞

n+ 1

n

1

2
=

1

2
< 1

Hence, the series converges.

• Consider the series

∞∑
n=1

n!

2n
. To use the Ratio Test, look at the limit:

lim
n→∞

|an+1

an
| = lim

n→∞

(n+ 1)!

2n+1

2n

n
= lim

n→∞

(n+ 1)!

n!

1

2
= lim

n→∞

n+ 1

2

1

2
=∞

Hence, the series diverges.

• see Final Exam Review, #8(c)(d)
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Checklist for infinite series:

To decide whether a given infinite series
∑

an converges or not, check the following:

• Is the series geometric? If so, you can determine convergence based on the value of r.

• Do the individual terms an → 0 as n→∞? If not, the series diverges, by the Divergence
(nth-Term) Test.

• Is the series a p-series? If so, you can determine convergence based on the value of p.

• Is an a ratio of two polynomials? Then look at the ratio of the leading terms and use the
limit-comparison test with the appropriate p-series (or in the case the two polynomials
have the same degree, the series will diverge by the Divergence Test).

• If none of the above apply, and especially if an involves n as an exponent and/or n!, try
the Ratio Test.

For an alternating series
∑

(−1)nan:

• First analyze the non-alternating series
∑

an :

• If
∑

an converges, the alternating series
∑

(−1)nan is absolutely convergent.

• If
∑

an diverges, use the Alternating Series Test to check whether
∑

(−1)nan is condi-

tionally convergent.

• If the Alternating Series Test fails, it will usually be because lim
n→∞

an 6= 0, in which case

the series is divergent by the Divergence Test.
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