Convergence/Divergence of Infinite Series

Math 1575 - Fall 2023
Suman Ganguli

Section numbers refer to OpenStax Calculus, Volume 2 by E. Herman and G. Strang:

Section 5.2

Geometric Series

If the series is geometric, you can determine convergence or divergence based on the value of r :

- A geometric series converges if $|r|<1$ (i.e., if $-1<r<1$), in which case

$$
\begin{gathered}
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\ldots=\frac{a}{1-r} \\
\sum_{n=M}^{\infty} a r^{n}=a r^{M}+a r^{M+1}+a r^{M+2}+a r^{M+3}+\ldots=\frac{a r^{M}}{1-r}
\end{gathered}
$$

- A geometric series diverges if $|r| \geq 1$ (i.e., $r \leq-1$ or $r \geq 1$).

Examples:

- OpenStax Example 5.9
- Final Exam Review, \#8(b)

Section 5.3

Divergence (or n th-Term) Test

If the individual terms in the series don't go to zero, then the series diverges:

- An infinite series $\sum a_{n}$ diverges if the nth term a_{n} does not go to zero, i.e., if

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0
$$

- But the "converse" is not true, i.e., we have numerous examples of infinite series $\sum a_{n}$ where $\lim _{n \rightarrow \infty} a_{n}=0$ but $\sum a_{n}$ diverges.

Examples:

- OpenStax Example 5.13
- Final Exam Review, \#8(a)

Integral Test

If you can integrate the function that makes up the terms in the series, you can determine convergence or divergence based on the improper integral:

- Suppose $a_{n}=f(n)$, where $f(x)$ is positive, decreasing, and continuous for $x \geq M$.
(i) If the improper integral $\int_{M}^{\infty} f(x) d x$ converges, then the series $\sum_{n=M}^{\infty} a_{n}$ also converges.
(ii) If the improper integral $\int_{M}^{\infty} f(x) d x$ diverges, then the series $\sum_{n=M}^{\infty} a_{n}$ also diverges.

Examples:

- OpenStax Example 5.14

p-series Test

By applying the Integral Test to $\sum_{n=M}^{\infty} \frac{1}{n^{p}}$, i.e., by integrating $\int_{M}^{\infty} \frac{1}{x^{p}} d x$, we showed that we can determine the convergence or divergence of a p-series $\sum_{n=M}^{\infty} \frac{1}{n^{p}}$ based on the value of p :

- If $p>1$, then the series $\sum_{n=M}^{\infty} \frac{1}{n^{p}}$ converges.
- If $p \leq 1$, then the series $\sum_{n=M}^{\infty} \frac{1}{n^{p}}$ diverges.

Examples:

- OpenStax Example 5.15

Section 5.4

Limit Comparison Test

To test the convergence of an infinite series $\sum a_{n}$, you can sometimes compare it to another series $\sum b_{n}$ (where you know about the convergence of the latter series) by looking at the limit of a_{n} over b_{n} as n goes to infinity:

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

If $L>0$, i.e., the limit is some finite number greater than 0 , then $\sum a_{n}$ has the same convergence/divergence behavior as $\sum b_{n}$, i.e.,
(i) If $\sum b_{n}$ converges, then $\sum a_{n}$ also converges
(ii) If $\sum b_{n}$ diverges, then $\sum a_{n}$ also diverges
(There are additional parts of the Limit Comparison Test given in the text, but focus on this case.)

When does the Limit Comparison Test work on a given $\sum a_{n}$, and what's the

 strategy for choosing the series $\sum b_{n}$?- Start by thinking about what happens to the terms a_{n} as n gets big. In many instances, $a_{n} \approx b_{n}$, where we already know about the convergence of $\sum b_{n}$ by some other method.
- Many applications of the Limit Comparison Test occur when a_{n} is a ratio involving polynomials and/or roots of polynomials. In such cases, a choice of $b_{n}=\frac{1}{n^{p}}$ for a certain p-value will often work.
- How do you figure out what value of p ? Analyze what happens to a_{n} as n gets big by looking at the leading terms in the polynomials involved.

Example:

- Given $\sum_{n=1}^{\infty} \frac{12 n+5}{7 n^{5}-n^{2}+10}$, look at the leading terms to analyze what happens as n gets big:

$$
a_{n}=\frac{12 n+5}{7 n^{5}-n^{2}+10} \approx \frac{12 n}{7 n^{5}}=\frac{12}{7 n^{4}}
$$

This indicates that we should use a Limit Comparison Test with $b_{n}=\frac{1}{n^{4}}$:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{12 n+5}{7 n^{5}-n^{2}+10} \frac{n^{4}}{1}=\lim _{n \rightarrow \infty} \frac{n\left(12+\frac{5}{n}\right)}{n^{5}\left(7-\frac{1}{n^{3}}+\frac{10}{n^{5}}\right)} \frac{n^{4}}{1}=\lim _{n \rightarrow \infty} \frac{12+\frac{5}{n}}{7-\frac{1}{n^{3}}+\frac{10}{n^{5}}}=\frac{12}{7}
$$

So $L=\frac{12}{7}>0$ and we know that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ converges as a p-series with $p>1$. Hence part (ii) of the Limit-Comparison Theorem above applies, and so $\sum_{n=1}^{\infty} \frac{12 n+5}{7 n^{5}-n^{2}+10}$ also converges.

Examples:

- OpenStax Example 5.18

Section 5.4

Absolute \& Conditional Convergence of Alternating Series

Absolute Convergence: An infinite series $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|$ converges (i.e., the series converges if you make all the terms positive).
Conditional Convergence: An infinite series $\sum a_{n}$ converges conditionally if $\sum a_{n}$ converges but it does not converge absolutely, i.e., $\sum\left|a_{n}\right|$ diverges.

Absolute Convergence Implies Convergence

One way of checking whether an alternating series converges is to check whether the series when you make all the terms positive converges. If so, the alternating series also converges:

- Theorem: If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ also converges.
- Example: $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}$ converges absolutely for any $p>1$ (since the p-series test tells us that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $\left.p>1\right)$. Hence $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}$ converges for any $p>1$.

Alternating Series Test (Theorem 2, p570)

In general it is easier to establish that an alternating series converges-you just need to check that the individual terms (without the alternating signs) are decreasing and that they go to zero:

- Alternating Series Test: An alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges if
(i) $a_{1}>a_{2}>a_{3}>\ldots$
(ii) $\lim _{n \rightarrow \infty} a_{n}=0$
- Example: $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ converges by the Alternating Series Test (since $1>\frac{1}{2}>\frac{1}{3}>\ldots$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$) but $\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{1}{n}\right|=\sum \frac{1}{n}$ diverges (the harmonic series!). Hence, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ converges conditionally. In fact, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}$ converges conditionally for any $0<p \leq 1$.

Examples:

- OpenStax Example 5.18
- Final Exam Review, \#9 (which also use the geometric series and limit-comparison, p-series, and divergence tests!)

Section 5.6: Ratio Test

Another way to test the convergence of an infinite series $\sum a_{n}$ is to look at the limit of the ratio of successive terms as n goes to infinity:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

- If $\rho<1$, then the series converges absolutely.
- If $\rho>1$, then the series diverges.
- If $\rho=1$, then the test is inconclusive.

The Ratio Test often works for series where a_{n} involves n as an exponent and/or n ! (" n factorial"):

Examples:

- Consider the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$. To use the Ratio Test, look at the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{2^{n+1}} \frac{2^{n}}{n}=\lim _{n \rightarrow \infty} \frac{n+1}{n} \frac{1}{2}=\frac{1}{2}<1
$$

Hence, the series converges.

- Consider the series $\sum_{n=1}^{\infty} \frac{n!}{2^{n}}$. To use the Ratio Test, look at the limit:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)!}{2^{n+1}} \frac{2^{n}}{n}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!} \frac{1}{2}=\lim _{n \rightarrow \infty} \frac{n+1}{2} \frac{1}{2}=\infty
$$

Hence, the series diverges.

- see Final Exam Review, \#8(c)(d)

Checklist for infinite series:

To decide whether a given infinite series $\sum a_{n}$ converges or not, check the following:

- Is the series geometric? If so, you can determine convergence based on the value of r.
- Do the individual terms $a_{n} \rightarrow 0$ as $n \rightarrow \infty$? If not, the series diverges, by the Divergence (n th-Term) Test.
- Is the series a p-series? If so, you can determine convergence based on the value of p.
- Is a_{n} a ratio of two polynomials? Then look at the ratio of the leading terms and use the limit-comparison test with the appropriate p-series (or in the case the two polynomials have the same degree, the series will diverge by the Divergence Test).
- If none of the above apply, and especially if a_{n} involves n as an exponent and/or n !, try the Ratio Test.

For an alternating series $\sum(-1)^{n} a_{n}$:

- First analyze the non-alternating series $\sum a_{n}$:
- If $\sum a_{n}$ converges, the alternating series $\sum(-1)^{n} a_{n}$ is absolutely convergent.
- If $\sum a_{n}$ diverges, use the Alternating Series Test to check whether $\sum(-1)^{n} a_{n}$ is conditionally convergent.
- If the Alternating Series Test fails, it will usually be because $\lim _{n \rightarrow \infty} a_{n} \neq 0$, in which case the series is divergent by the Divergence Test.

