\qquad

1. (10 points) Solve the following indefinite integral using the method of partial fractions:

$$
\int \frac{4}{x^{2}+2 x-15} d x
$$

Hint: start by factoring the quadratic polynomial in the denominator of the integrand, and then set up a partial fractions decomposition of the integrand in terms of those factors.

Solution: Since $x^{2}+2 x-15=(x+5)(x-3)$, a partial fractions decomposition of the integrand takes the form:

$$
\frac{4}{(x+5)(x-3)}=\frac{A}{x+5}+\frac{B}{x-3}
$$

We solve for the unknowns A, B by first multiplying through both sides of the equation by $(x+5)(x-3)$ in order to "clear the fraction":

$$
4=A(x-3)+B(x+5)
$$

We then use "strategic substitution" to find A and B, i.e., we substitute the values of x which "zero out" one of the linear factors on the right-hand side.

Substituting $x=3$:

$$
4=B(3+5) \Longrightarrow B=\frac{4}{8}=\frac{1}{2}
$$

Substituting $x=-5$:

$$
4=A(-5-3) \Longrightarrow A=\frac{4}{-8}=-\frac{1}{2}
$$

Hence:

$$
\int \frac{4}{(x+5)(x-3)} d x=\int\left(\frac{-1 / 2}{x+5}+\frac{1 / 2}{x-3}\right) d x=-\frac{1}{2} \ln |x+5|+\frac{1}{2} \ln |x-3|+C
$$

2. (10 points) Shown below is the graph of $y=3-x^{2}$.

(a) Add the graph of the line $y=-2 x$ above, and shade in the area enclosed by the two graphs.
(b) Algebraically solve for the two values of x where the graphs intersect:

Solution: From looking at the graph above, it appears that the two graphs intersect at $x=-1$ and $x=3$. We can confirm this by algebraically solving for where the two functions are equal:

$$
3-x^{2}=-2 x \Longrightarrow x^{2}-2 x-3=0 \Longrightarrow x^{2}-2 x-3=0 \Longrightarrow(x-3)(x+1)=0 \Longrightarrow x=3, x=-1
$$

(c) Set up and solve the definite integral to find the area enclosed between the two graphs:

Solution:

$$
\begin{aligned}
& \int_{-1}^{3}\left(3-x^{2}\right)-(-2 x) d x=\int_{-1}^{3}\left(-x^{2}+2 x+3\right) d x= \\
& {\left[-\frac{x^{3}}{3}+x^{2}+3 x\right]_{-1}^{3}=\left(-\frac{3^{3}}{3}+3^{2}+3(3)\right)-\left(-\frac{(-1)^{3}}{3}+(-1)^{2}+3(-1)\right)=} \\
& \left(-\frac{27}{3}+9+9\right)-\left(\frac{1}{3}+1-3\right)=11-\frac{1}{3}=\frac{32}{3}
\end{aligned}
$$

