MAT 1575 Final Exam Review Problems

Revised by Prof. Kostadinov Spring 2014, Prof. ElHitti Summer 2017, Prof. Africk Fall 2019

1. Evaluate the following definite integrals:
a. $\int_{0}^{1} x^{2}\left(x^{3}+1\right)^{3} d x$
b. $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+9}} d x$
c. $\int_{0}^{1} \frac{3 x^{2}}{\sqrt[3]{x^{3}+1}} d x$
2. Evaluate the following indefinite integrals:
a. $\int x^{2} \ln (x) d x$
b. $\int x^{2} e^{-x} d x$
c. $\int x \cos (3 x) d x$
3. Find the area of the region enclosed by the graphs of:
a. $y=3-x^{2}$ and $y=-2 x$
b. $y=x^{2}-2 x$ and $y=x+4$
4. Find the volume of the solid obtained by rotating the region bounded by the graphs of:
a. $y=x^{2}-9, y=0$ about the x -axis.
b. $y=16-x, y=3 x+12, x=-1$ about the x -axis.
c. $\mathrm{y}=\mathrm{x}^{2}+2, \mathrm{y}=-\mathrm{x}^{2}+10, \mathrm{x} \geq 0$ about the y -axis.
5. Evaluate the following indefinite integrals:
a. $\int \frac{1}{x^{2} \sqrt{36-x^{2}}} d x$
b. $\int \frac{\sqrt{x^{2}-9}}{x^{4}} d x$
c. $\int \frac{9}{x^{2} \sqrt{x^{2}+9}} d x$
d. $\int \frac{6}{x^{2} \sqrt{x^{2}-36}} d x$
6. Evaluate the following indefinite integrals:
a. $\int \frac{3 x+7}{x^{2}+6 x+9} d x$
b. $\int \frac{5 x+6}{x^{2}-36} d x$
c. $\int \frac{3 x+2}{x^{2}+2 x-8} d x$
d. $\int \frac{12-8 x}{x^{2}(x-6)} d x$
e. $\int \frac{-2 x^{2}+4 x+4}{x(x-2)^{2}} d x$
7. Evaluate the improper integral:
a. $\int_{0}^{\infty} \frac{2}{(x+2)^{3}} d x$
b. $\int_{0}^{\infty} \frac{5}{\sqrt[5]{x+5}} d x$
c. $\int_{3}^{5} \frac{3}{\sqrt[3]{(x-3)^{4}}} d x$
8. Decide if the following series converges or not. Justify your answer using an appropriate test:
a. $\sum_{n=1}^{n=\infty} \frac{9 n^{5}}{3 n^{5}+5}$
b. $\sum_{\mathrm{n}=1}^{\infty} \frac{5}{10^{n}}$
c. $\sum_{n=1}^{\infty} \frac{5 n}{10^{n}}$
d. $\sum_{n=1}^{n=\infty} \frac{n!}{n^{2} 5^{n}}$
e. $\sum_{n=1}^{n=\infty}\left(\frac{n+1}{2 n+3}\right)^{n}$
9. Determine whether the series is absolutely or conditionally convergent or divergent:
a. $\sum_{n=1}^{\infty}(-1)^{n} \frac{10}{7 n+2}$
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{5}}}$
c. $\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} 5^{-\mathrm{n}}$
d. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-n-1}{2 n^{2}+n+1}$
10. Find the radius and the interval of convergence of the following power series:
a. $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n+2}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{n+2}$
c. $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n 5^{n}}$
d. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{n 5^{n}}$
11. Find the Taylor polynomial of degree 2 for the given function, centered at the given number a:
a. $\quad f(x)=e^{-2 x}$ at $a=-1$.
b. $f(x)=\cos (5 x)$ at $a=2 \pi$.
12. Find the Taylor polynomial of degree 3 for the given function, centered at the given number a:
a. $f(x)=1+e^{-x}$ at $a=-1$
b. $f(x)=\sin (x)$ at $a=\frac{\pi}{2}$

Answers:

(1a). $\frac{5}{4}$
(1b). $\sqrt{10}-3$
(1c). $\frac{3}{2}\left(2^{\frac{2}{3}}-1\right)$
(2a). $\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+C$
(2b). $-\left(x^{2}+2 x+2\right) e^{-x}+C$
(2c). $\frac{1}{3} x \sin (3 x)+\frac{1}{9} \cos (3 x)+C$

(3a). The area of the region between the two curves is:

$$
\text { Area }=\int_{-1}^{3}\left(3-x^{2}-(-2 x)\right) d x=\frac{32}{3}
$$

(3b). The area of the region between the two curves is:

$$
\text { Area }=\int_{-1}^{4}\left(x+4-\left(x^{2}-2 x\right)\right) d x=\frac{125}{6}
$$

(4a). Approximate the volume of the solid by vertical disks with radius $\boldsymbol{y}=\boldsymbol{x}^{2}-9$ between $\boldsymbol{x}=-3$ and $\boldsymbol{x}=3$;
 gives the volume is $V=\int_{-3}^{3} \pi\left(x^{2}-9\right)^{2} \mathrm{dx}=\frac{1296}{5} \pi$.
(4b). Using a washer of outer radius $R_{\text {outer }}=16-x$ and inner radius $R_{\text {inner }}=3 x+12$ at x, gives the volume: $V=\pi \int_{-1}^{1}\left((16-x)^{2}-(3 x+12)^{2}\right) d x=\frac{656 \pi}{3}$, where the upper limit 1 is obtained from $16-x=3 x+12 \Rightarrow x=1$.
(4c). 16π
(5a). $-\frac{\sqrt{36-x^{2}}}{36 x}+C$
(5b). $\frac{\left(x^{2}-9\right)^{3 / 2}}{27 x^{3}}+C$
(5c). $-\frac{\sqrt{x^{2}+9}}{x}+C$
(5d). $\frac{\sqrt{x^{2}-36}}{6 x}+C$
(6a). $\frac{2}{x+3}+3 \ln |x+3|+C$
(6b). $3 \ln |x-6|+2 \ln |x+6|+C$
(6c). $\frac{5}{3} \ln |x+4|+\frac{4}{3} \ln |x-2|+C$
(6d). $\frac{2}{x}-\ln |x-6|+\ln |x|+C$
(6e). $\ln |x|-\frac{2}{x-2}-3 \ln |x-2|+C$
(7a). $\frac{1}{4}$
(7b). The integral does not converge
(7c). The integral does not converge
(8a). $\lim _{n \rightarrow \infty} \frac{9 n^{5}}{3 n^{5}+5}=\lim _{n \rightarrow \infty} \frac{\mathbf{3}}{1+5 / 3 n^{5}}=\mathbf{3}>0$ so the series diverges by the nth term test for divergence.
(8b). This is a geometric series, with common ration $r=1 / 10<1$, so it converges to $5 / 9$:

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{5}{10^{n}}=\frac{a}{1-r}=\frac{5 / 10}{1-\frac{1}{10}}=\frac{5 / 10}{9 / 10}=\frac{5}{9}
$$

(8c). $\lim _{n \rightarrow \infty} \frac{5(n+1)}{10^{n+1}} / \frac{5 n}{10^{n}}=\lim _{n \rightarrow \infty} \frac{1+1 / 5 n}{10}=\frac{1}{10}<1$ so the series converges by the ratio test.
(8d). $\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{2} 5^{n+1}} / \frac{n!}{n^{2} 5^{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{5(n+1)}=\lim _{n \rightarrow \infty} \frac{n}{5\left(1+\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{5}=\infty$ so the series diverges by the ratio test.
(8e). $\lim _{n \rightarrow \infty}\left[\left(\frac{n+1}{2 n+3}\right)^{n}\right]^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n+3}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{2+\frac{3}{n}}=\frac{1}{2}<1$ so the series converges by the nth root test.
(9a). Conditionally convergent: The series converges by the alternating series test since $\frac{10}{7 n+2}>\frac{10}{7(n+1)+2}$ and $\lim _{n \rightarrow \infty} \frac{\mathbf{1 0}}{7 \boldsymbol{n}+2}=\mathbf{0}$ but not absolutely since $\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{10}{7 n+2}\right|=\sum_{n=1}^{\infty} \frac{10}{7 n+2}$ diverges by comparing it witt $\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{1}{\sqrt{n^{5}}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{5 / 2}}$ aich diverges, using the limit comparison test: $\lim _{n \rightarrow \infty} \frac{10}{7 n+2} / \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{11}{7 n+2}$,
(9b). Absolutely convergent: a convergent p-series with $\mathrm{p}=5 / 2>1$.
(9c). Absolutely convergent: $\sum_{n=0}^{\infty}\left|(-1)^{n} 5^{-n}\right|=\sum_{n=0}^{\infty} 5^{-n}$ is a convergent geometric series with common ratio $r=1 / 5<1$.
(9d). $\lim _{n \rightarrow \infty} \frac{n^{2}-n-1}{2 n^{2}+n+1}=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n}-\frac{1}{n^{2}}}{2+\frac{1}{n}+\frac{1}{n^{2}}}=\frac{1}{2}>0$ so the series diverges by the nth term test for divergence.
(10a). The power series converges when $|x-1|<1$ by the ratio test, which gives a radius of convergence 1 and interval of convergence centered at 1 . The series diverges at $x=2$ (harmonic series) but converges at $\mathrm{x}=0$ (alternate harmonic series), so the interval of convergence is $0 \leq \mathrm{x}<2$.
(10b). The power series converges when $|x-1|<1$ by the ratio test, which gives a radius of convergence 1 and interval of convergence centered at 1 . The series diverges at $\mathrm{x}=0$ (harmonic series) but converges at $\mathrm{x}=2$ (alternate harmonic series), so the interval of convergence is $0<\mathrm{x} \leq 2$.
(10c). The power series converges when $|x+1|<5$ by the ratio test, which gives a radius of convergence 5 and interval of convergence centered at -1 . The series diverges at $x=4$ (harmonic series) but converges at $x=-6$ (alternate harmonic series), so the interval of convergence is $-6 \leq x<4$.
(10d). The power series converges when $|x+1|<5$ by the ratio test, which gives a radius of convergence 5 and interval of convergence centered at -1 . The series diverges at $x=-6$ (harmonic series) but converges at $x=4$ (alternate harmonic series), so the interval of convergence is $-6<x \leq 4$.
(11a). $p_{2}(x)=e^{2}-2 e^{2}(x+1)+2 e^{2}(x+1)^{2}$
(11b). $p_{2}(x)=1-\frac{25}{2}(x-2 \pi)^{2}$
(12a). $p_{3}(x)=1+e-e(x+1)+\frac{e}{2}(x+1)^{2}-\frac{e}{6}(x+1)^{3}$

$$
=1+\frac{e}{3}-\frac{e}{2} x-\frac{e}{6} x^{3}
$$

(12b). $p_{3}(x)=1-\frac{1}{2}\left(x-\frac{\pi}{2}\right)^{2}$

