\qquad

| Question: | 1 | 2 | 3 | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 10 | 10 | 10 | 10 | 10 | 50 |
| Score: | | | | | | |

Show all your work and simplify your answers.

1. (10 points) Evaluate the following integrals using the basic antiderivatives:
(a)

$$
\int\left(3 x^{6}-\frac{x^{3}}{2}+\frac{1}{x}+\frac{1}{x^{2}}\right) d x=
$$

Solution: $\frac{3 x^{7}}{7}-\frac{x^{4}}{8}+\ln |x|-x^{-1}+C$
(b)

$$
\int_{1}^{4}(1+3 \sqrt{t}) d t=
$$

$$
\text { Solution: } \int_{1}^{4}(1+3 \sqrt{t}) d t=\left[t+2 t^{3 / 2}\right]_{1}^{4}=\left(4+2 \cdot 4^{3 / 2}\right)-\left(1+2 \cdot 1^{3 / 2}\right)=(4+16)-(1+2)=20-3=17
$$

2. (10 points) Evaluate the definite integral $\int_{0}^{4}(2 x+3) d x$ in two different ways:
(a) using the Fundamental Theorem of Calculus, i.e., using an antiderivative:

Solution:

$$
\int_{0}^{4}(2 x+3) d x=\left[x^{2}+3 x\right]_{0}^{4}=\left(4^{2}+3(4)\right)-\left(0^{2}+3(0)\right)=16+12=28
$$

(b) Use the given graph of $y=2 x+3$ and area calculations (as on the quizzes, shade in the region of the graph corresponding to the definite integral, and label the graph with the relevant dimensions and areas):

Solution: $\int_{0}^{4}(2 x+3) d x=(4)(3)+\frac{1}{2}(4)(8)=12+16=28$
3. (10 points) This graph shows the areas of each of the enclosed regions between the curve $y=f(x)$ and the x-axis. Use the graph to find the values of the definite integrals below:

(a) $\int_{a}^{c} f(x) d x=$

Solution: $3-1=2$
(b) $\int_{b}^{c} f(x) d x=$

Solution: - 1
(c) $\int_{a}^{e} f(x) d x=$

Solution: $3-1+2-5=-1$
(d) $\int_{a}^{e}|f(x)| d x=$

Solution: $3+1+2+5=11$
4. (10 points) Evaluate the following integrals using substitution:
(a) $\int e^{\cos x} \sin x d x=$

Solution: Substituting $u=\cos x, d u=-\sin x d x$ yields:

$$
\int e^{\cos x} \sin x d x=-\int e^{u} d u=-e^{\cos x}+C
$$

(b) $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+9}} d x=$

Solution: Substituting $u=x^{2}+9, d u=2 x d x$ yields:

$$
\int_{0}^{1} \frac{x}{\sqrt{x^{2}+9}} d x=\frac{1}{2} \int_{x=0}^{x=1} \frac{d u}{\sqrt{u}} d u=\frac{1}{2}\left[2 u^{1 / 2}\right]_{x=0}^{x=1}=\left[\sqrt{x^{2}+9}\right]_{x=0}^{x=1}=\sqrt{1+9}-\sqrt{0+9}=\sqrt{10}-3
$$

5. (10 points) Recall that the integration by parts formula is:

$$
\int u d v=u v-\int v d u \quad \text { or } \quad \int u(x) v^{\prime}(x) d x=u(x) v(x)-\int v(x) u^{\prime}(x) d x
$$

Use integration by parts to solve the following integrals. The appropriate choices of u and $d v$ are given. Start by finding $d u$ and v, and then apply the integration by parts formula.
(a)

$$
\int x \sin (2 x) d x=
$$

Solution: Integration by parts works with the following choices:

$$
\begin{aligned}
& u=x \Longrightarrow d u=d x \\
& d v=\sin (2 x) d x \Longrightarrow v=-\frac{1}{2} \cos (2 x)
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \int x \sin (2 x) d x=-\frac{1}{2} x \cos (2 x)-\int-\frac{1}{2} \cos (2 x) d x=-\frac{1}{2} x \cos (2 x)+\frac{1}{2} \int \cos (2 x) d x \\
& =-\frac{1}{2} x \cos (2 x)+\frac{1}{2} \cdot \frac{1}{2} \sin (2 x)+C=-\frac{1}{2} x \cos (2 x)+\frac{1}{4} \sin (2 x)+C
\end{aligned}
$$

(b)

$$
\int \frac{\ln x}{x^{3}} d x=
$$

Solution: Integration by parts works with the following choices:

$$
\begin{aligned}
& u=\ln x \Longrightarrow d u=\frac{1}{x} d x \\
& d v=\frac{1}{x^{3}} d x \Longrightarrow v=\frac{x^{-2}}{-2}=-\frac{1}{2 x^{2}}
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \int \frac{\ln x}{x^{3}} d x=(\ln x)\left(-\frac{1}{2 x^{2}}\right)-\int\left(-\frac{1}{2 x^{2}}\right) \frac{1}{x} d x=-\frac{\ln x}{2 x^{2}}+\frac{1}{2} \int \frac{1}{x^{3}} d x \\
& =-\frac{\ln x}{2 x^{2}}+\frac{1}{2}\left(-\frac{1}{2 x^{2}}\right)+C=-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+C
\end{aligned}
$$

